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Notes Lecture 7 (Sheaf Cohomology)

Tom Sinke; t.e.sinke@students.uu.nl

We assume all categories to be small. Let C be a category. We denote the objects of C as C0. We let ∗ denote
the terminal object of the category that we work in.

Goals:

• Small recap of the last 2 lectures

• Exactness of a sequence of sheaves and exactness on stalks

• Generalization of sheaf cohomology

1 Recap

The intend of this chapter is to do a short recap of the ‘ingredients’ we needed to define sheaf cohomology
in the previous lecture.

Definition 1. (Global sections functor) Let E be a topos, then we let Γ(−) : E → Set denote the map
Γ(−) = HomE(∗,−). We call this map the global sections functor.

As mentioned in Lecture 4, the global sections functor is right adjoint to the functor Const : Set → E , which
is the canonical Set-tensoring functor applied to the terminal object, i.e. S 7→

∐
s∈S ∗. If E = Sh(C, J) and

S a set, then Const(S) is precisely the constant sheaf on S. Since Const preserves finite limits, we have
that

E Set
Γ

Const⊣

is a geometric morphism.

For a category C, we can look at the abelian group objects Ab(C) of C, i.e. objects of C together with a
multiplication, neutral element and inverse morphism, that respect commutativity. The following proposition
gives us a characterization of the abelian group objects of a (pre)sheaf category .

Proposition 2. Let C be a small category with finite products, and let (C, J) be a site. Then Ab(PSh(C)) ≃
PSh(C; Ab) and Ab(Sh(C, J)) ≃ Sh(C, J ; Ab), i.e. the abelian group objects of a category of (pre)sheaves are
canonically isomorphic to the (pre)sheaves that map to abelian groups.

Proof. For PSh(C), it is not hard to check that this is the case, but it is quite tedious. For sheaves, there is
even more trouble to go through. Because of this, the proof is left as an exercise to the reader. :)

Moreover, recall that a geometric morphism F : E → F induces an adjunction

Ab(E) Ab(F)
Ab(F∗)

Ab(F∗)

⊣

In general, Ab(F ∗) need not preserve finite limits. However, for the global sections functor Γ and the map
Const, we actually have that Ab(Const) preserves finite limits, so it is exact. We will use Ab(Γ) to define
sheaf cohomology.
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Lastly, to define sheaf cohomology, we needed right derived functors. For that, we need to define cohomology
for objects of abelian categories.

Definition 3. Let A be an abelian category, and let C• ∈ Ch(A) be a cochain complex, i.e. a collection of
objects Ci and maps ∂i such that we get a long exact sequence

· · · −→ Ci−1 ∂i−1

−→ Ci ∂i

−→ Ci+1 −→ . . . .

Then we define the i-th (chain) cohomology of C• as Hi(C•) := ker ∂i/im∂i−1, for i ∈ Z≥0 (here, C−1 = 0
and ∂−1 = 0).

Let A be an abelian category that has enough injectives. Then for any A ∈ A0, there exists an injective
resolution 0 → A → I0 → I1 → . . . , i.e. a long exact sequence such that Ii is injective, that is HomA(−, Ii)
is exact, for all i ∈ Z≥0. We denote this resolution by I•.

Definition 4. (Right derived functor). Let A,B be abelian categories, let F : A → B be a left exact functor
and suppose A has enough injectives. Let A ∈ A0 and let I• be an injective resolution of A. Then we define
the right derived functor for i ∈ Z≥0 by RiF (A) := Hi(FI•).

Note that, by definition, R0F (A) = FA. Moreover, by Homework 6, it holds that the above definition is
well-defined.

Recall that, for a topos E , Ab(E) has enough injectives. Now, we can define sheaf cohomology, as was done
towards the end of last lecture.

Definition 5. (Sheaf Cohomology). Given a topos E and an object F ∈ Ab(E)0, we define the i-th sheaf
cohomology of F to be the i-th right derived functor of the global sections functor Ab(Γ): Ab(E) → Ab, i.e.
Hi(F ) := Hi(E , F ) := RiAb(Γ)F .

For intuition, the idea is that sheaf cohomology measures the ‘failure of Γ to be exact’. In the next section,
we will look more closely at what it means for a sequence of sheaves on a site to be exact.

2 Exactness of a sequence

Let (C, J) be a site and E = Sh(C, J). We want to analyse what it means for a sequence

0 → A → B → C → 0

in Ab(E) ≃ Sh(C, J ; Ab) to be exact. We will find out that left exactness can be computed ‘object-wise’.
However, for right exactness, we need to be a bit more specific.

Proposition 6. Let E = Sh(C, J) as above and let A,B,C ∈ Ab(E)0. Then the following are equivalent:

1. The sequence 0 → A → B → C is exact.

2. For any U ∈ C0, the sequence 0 → A(U) → B(U) → C(U) is exact.

Proof. Let (−)# : PSh(C) → Sh(C, J) denote the sheafification functor. Then recall from Lecture 2 that we
have the following geometric morphism:

Sh(C, J) PSh(C)
i

(−)#

⊣
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This induces a geometric morphism on the abelian valued sheaves. Thus, since both i and (−)# are left
exact, we have that the sequence in 1. is exact precisely when it is exact as a sequence of presheaves. We
then apply the fact that limits (and also colimits) of presheaves can be computed object-wise, yielding the
equivalence between the given statements.

Sadly, we cannot generalize Proposition 6 for right exact sequences of sheaves, since the sheafification functor
is not necessarily right exact. Thus, we would want to have a characterization for epimorphisms which are
preserved by the sheafification functor. These maps are precisely the local epimorphisms.

Definition 7. Let F ,G ∈ PSh(C) be presheaves and let f : F → G be a morphism. Then f is called a local
epimorphism if for every U ∈ C0 and every s ∈ G(U), there exists a covering family (Ui → U)i∈I of U such
that there exists an si ∈ F(Ui) such that f(si) = s for any i ∈ I.

Proposition 8. Let E = Sh(C, J) be a topos, let A,B ∈ E0 and let f : A → B be a morphism. Then f is an
epimorphism of sheaves if and only if f is a local epimorphism as a morphism of presheaves.

Proof. See Corollary 2.1.6 of [1]

The above definition and proposition also hold for abelian valued (pre)sheaves. By combining the previous
two propositions, we get the following:

Proposition 9. Let E = Sh(C, J) be a topos and let A,B,C ∈ Ab(E)0. Then the following are equivalent:

1. The sequence 0 → A → B → C → 0 is exact.

2. For any U ∈ C0, the sequence 0 → A(U) → B(U) → C(U) is exact, and B → C is a local epimorphism.

Besides the above method, there are also cases where exactness can be tested ‘stalkwise’. Recall from the
fourth lecture that we can define a point of a topos E as a geometric morphism

Set E
x∗

x∗

⊣

For A ∈ E0, we call x∗A the stalk of A at x, and often use the notation Ax := x∗A.

The aforementioned map induces a geometric morphism Ab → Ab(E). The following definition will allow us
to test exactness on the stalks

Definition 10. A topos E has enough points if for any morphism f : A → B, it holds that if for any point
x of E , x∗f is an isomorphism, then f is an isomorphism.

Proposition 11. Suppose E is a topos that has enough points, and A,B,C ∈ Ab(E)0. Then the following
are equivalent:

1. The sequence 0 → A → B → C → 0 is exact.

2. For any point x of Ab(E), the sequence 0 → Ax → Bx → Cx → 0 is exact.

Proof. This is part of the homework.

For a topological space X, we have seen the category Op(X) of opens of X.

Proposition 12. Let E = Sh(X, J) := Sh(Op(X), J). Then E has enough points.
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Recall from Lecture 4 that the sheaves on a topological space correspond to the étale spaces of that
space, i.e. Sh(X) ≃ Et(X). In the corresponding homework, we also saw that Homflat,cont

Cat (C, E) ≃
HomTopos(E ,Sh(C, J)), and in particular that the points of Sh(X) correspond to the completely prime filters
of opens in Op(X).

Example 13. We recall what we saw in Homework 4:

• Let X = {·} be the singleton space. Then Sh(X) ≃ Set, and HomTopos(Set,Sh(X)) = {idSet}.

• Let X = {p, q} be the 2-point space with discrete topology. Then HomTopos(Set,Sh(X)) = {fp, fq},
where fp corresponds to the map f ′p : Op(X) → Set such that fp(U) = 1 if p ∈ U and 0 otherwise. The
map fq is defined symmetrically for the point q.

• LetX = {p, q} be the 2-point space with the trivial topology. Then HomTopos(Set,Sh(X)) is a singleton
set.

In general, it holds that the points of a topological space correspond to the points of Sh(X) when X is a
sober space, i.e. every irreducible closed subset of X is the closure of a unique point. Note that in the
example above, the first two spaces are sober, but the last is not.

3 Local sheaf cohomology

In the first section, we defined the i-th sheaf cohomology for abelian objects of a topos E (i.e. abelian valued
sheaves), using the ‘abelianization’ of the global sections functor Ab(Γ)(−) = HomAb(E)(∗,−). We denoted
the i-th sheaf cohomology of a sheaf F ∈ Ab(E)0 as Hi(E , F ). For a general object U ∈ E , we can define a
more general sheaf cohomology over U , denoted H•(U,F ).

To do this, we first introduce the ‘free abelian object’ functor. As the name suggests, this is an adjoint of a
forgetful functor.

Definition 14. Let E = Sh(C, J) be a topos. Then we have the forgetful functor i : Ab(E) → E . This
functor has a left adjoint Z[−] : E → Ab(E), defined as follows: we see F ∈ E0 as a presheaf, and then define
Z[F ] pointwise by applying the free abelian group functor to the set F(U) for all U ∈ C. After that, we
apply the sheafification functor to get a sheaf again.

Definition 15. Let E be a topos, let U ∈ E0 and let F ∈ Ab(E)0. We define the i-th sheaf cohomology over U
as the i-th right derived functor of the functor HomAb(E)(Z[U ],−), i.e. Hi(U,F ) = RiHomAb(E)(Z[U ],−)F .

Note that taking U = ∗ in the definition above yields sheaf cohomology as in Definition 5.

We will look at the slice topos/over topos E/U and see an isomorphism between cohomologies there and the
cohomology above. For this, we use that the geometric morphism j : Ab(E) → E is essential.

Definition 16. Let E ,F be topoi. A geometric morphism f : E → F is called essential if f∗ has a left-adjoint,
denoted f!, thus giving us the following diagram:

E F
f∗

f!

f∗

⊣
⊣

As with any geometric morphism, we have that an essential geometric morphism f : E → F induces an
adjunction Ab(f∗) : Ab(E) ←→ Ab(F) : Ab(f∗). By abstract nonsense, we can find the existence of a left-
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adjoint of Ab(f∗), which we call Ab(f!). It should be noted that Ab(f!) is not simply obtained by applying
f! to the abelian group objects of E , and that Ab(f!) and f! may be very different maps. We often write f!
instead of Ab(f!) when it is clear from the context which of the two maps we mean.

Recall from the fourth lecture that for E a topos and any U ∈ E0, the slice category E/U is also a topos. We
then saw that the inclusion map gave rise to a geometric morphism jU : E/U → E . This morphism happens
to be essential, and the induced map j! : Ab(E/U) → Ab(E), extension by zero functor, is exact.

Proposition 17. The extension by zero functor is exact.

Proof. For a general proof, see Proposition 11.3.1 in Exposé IV of [2]. We will give a proof outline. For now,
suppose E = PSh(C), and suppose that U ∈ C0. We will look at j! : Ab(E/y(U)) → Ab(E). Firsly, note that we
have an isomorphism E/y(U) ≃ PSh(E/U), which induces the isomorphism Ab(E/y(U)) ≃ PSh(E/U ; Ab).
Then, by construction of j! (which we did not show in the notes, see for example the aforementioned
reference), we have that for A ∈ Ab(E/y(U)), j!(A)(X) =

⊕
u∈HomC(X,U) A(X) for any X ∈ C0. This map is

left-adjoint to j∗, thus right exact. So we only need to show that it preserves monomorphisms. The latter
follows from the fact that limits of presheaves are computed object-wise.

For the general case, we have to apply the fact that we can always assume without loss of generality that U
comes from an object of C (again, see the reference), and that the sheafification functor is exact.

The following example illustrates why j! is often called the extension by zero functor.

Example 18. Let X be a topological space, U ⊆ X an open subset of X and N ∈ PSh(X/U). Then for any

open V ⊆ X, we have j!(N)(V ) =

{
N(V ) if V ⊆ U
0 otherwise

. Note that this follows directly from the definition of

Op(X) and j!.

From the existence and exactness of j!, and it being left-adjoint to j∗, we get an isomorphism between sheaf
cohomologies.

Proposition 19. Let E be a topos, U ∈ E0 and A ∈ Ab(E)0. Then we have the following isomorphism:

Hn(U,A) ≃ Hn(E/U, j∗(A)).

For the homework, see the next page!
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4 Homework

Exercise 1

Prove Proposition 11. Hint: check out the definition of filtered categories and filtered colimits.

Exercise 2

Let Ω be the Sierpinski space, that is the topological space consisting of two points 0 and 1, where the opens
subsets are ∅, {1} and Ω.

(a) Show that the canonical morphism p : Sh(Ω) → Set is essential, i.e. the functor Const = p∗ : Set → Sh(Ω)
has a left adjoint p! : Sh(X) → Set. (Note: p is the morphism as seen underneath Definition 1, where
E = Sh(Ω)).

(b) Show that the global sections functor Γ = p∗ : Sh(Ω) → Set also has a right adjoint p! : Set →
Sh(Ω).

(c) Deduce from (b) that all cohomology groups Hi(Ω, F ) with i > 0 and F an abelian sheaf, are triv-
ial.
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