Assignment 3: Seminar about Topos Theory Email: odinaanton0@gmail.com

Remark: All toposes on this exercise sheet are assumed to be *Grothendieck* toposes.

Exercise 1: Let \mathcal{T} be a topos and $f: X \to Z$ a morphism in \mathcal{T} .

- (a): Show that there exist $Y \in \mathcal{T}$ together with an epimorphism $\pi: X \to Y$ and a monomorphism $\iota: Y \hookrightarrow Z$ such that $f = \iota \circ \pi$.
- (b): Show that between any two triples (Y, π, ι) and (Y', π', ι') with this property there exists a unique isomorphism $g: Y \to Y'$ such that $\pi' = g \circ \pi$ and $\iota = \iota' \circ g$.
- (c): Deduce that any morphism in \mathcal{T} which is a monomorphism and an epimorphism is an isomorphism.

Exercise 2: Let \mathcal{E} be a category which has all pullbacks. Let $f: X \to Y$ be a morphism in \mathcal{E} . This morphism induces a pullback functor $f^*: \mathcal{E}/Y \to \mathcal{E}/X$. Indeed, to any $g: Z \to Y$ we can assign the pullback $X \times_Y Z \to X$ of g along f. Also, for any morphism $(Z \to Y) \to (Z' \to Y)$ in \mathcal{E}/Y there is a natural morphism $(X \times_Y Z \to X) \to (X \times_Y Z' \to X)$ in \mathcal{E}/X .

(a): Assume in addition that \mathcal{E} has a final object 1. Fix objects A and B in \mathcal{E} , and let $h: A \to 1$ be the unique arrow with the pullback functor $h^*: \mathcal{E}/1 \to \mathcal{E}/A$. Show that there is a natural one-to-one correspondence between the morphisms $A \to B$ in \mathcal{E} and the morphisms $\mathrm{id}_A \to h^*(B \to 1)$ in \mathcal{E}/A .

Suppose now that \mathcal{E} is a topos with initial object 0 and let $f: X \to Y$ be a morphism in \mathcal{E} . We saw in the lecture that both \mathcal{E}/X and \mathcal{E}/Y are toposes. Using this (and some additional properties of f^*) one can prove that f^* preserves finite colimits. You are allowed to use this fact for the next question.

(b): Suppose that there exists a morphism $X \to 0$. Show that $X \cong 0$.

Exercise 3: Indicate in the following table whether the given categories are toposes. You do not have to motivate your answer and you are allowed to use exercise 1 and 2 (the definition of a topos is also useful here). Let C be a small category.

Category:	Ø	{*}	Ab	Crings	CompactTop	$\operatorname{Psh}(\mathcal{C})$
Topos						
(Y/N):						