Topos Theory: Sheaf Cohomology, Week 4 Homework

Nicholas Puthu, 0952567, Utrecht University n.puthu-parackatbiosca@students.uu.nl

03/03/25

Exercise 1

(a)

Let (\mathcal{C}, J) be a site and \mathcal{E} a topos, and let

 $p: \mathcal{E} \to \mathrm{PSh}(\mathcal{C}) \quad \mathrm{and} \quad i: \mathrm{Sh}(\mathcal{C}, J) \to \mathrm{PSh}(\mathcal{C})$

be geometric morphisms, with i being the usual embedding.

- (i) Show that: p factors through i (as geometric morphisms) $\iff p_*$ factors through i_* (as functors).
- (ii) Show that: p_* factors through $i_* \iff$ for every object C in C and covering sieve $S \in J(C)$, the inclusion $S \hookrightarrow y_C$ induces an isomorphism $p^*(S) \xrightarrow{\sim} p^*(y_C)$.

(b)

Let (\mathcal{C}, J) be a site, \mathcal{E} a topos, and $y : \mathcal{C} \to PSh(\mathcal{C})$ the Yoneda embedding (functor, not geometric morphism). Recall the following lemma:

Lemma 1. For each flat functor $f : \mathcal{C} \to \mathcal{E}$,¹ there is a unique geometric morphism $p : \mathcal{E} \to PSh(\mathcal{C})$ (up to natural isomorphism) with $f = p^* \circ y$.

In fact, this correspondence gives rise to an equivalence of categories

 $\operatorname{Hom}_{\operatorname{Cat}}^{\operatorname{flat}}(\mathcal{C}, \mathcal{E}) \simeq \operatorname{Hom}_{\operatorname{Topos}}(\mathcal{E}, \operatorname{PSh}(\mathcal{C}))$

We say $f : \mathcal{C} \to \mathcal{E}$ is *continuous* if it sends covering sieves to colimiting cocones.² Now, given the above, prove the following refinement of this lemma:

¹If C has finite limits, f being flat means it preserves finite limits. However, for the purposes of this question, you do not need to know anything about what flatness is, besides it being some condition a functor (from a category to a topos) might satisfy.

²More precisely, a sieve $S \in J(C)$ may be viewed in C as a cocone of C over the diagram given by the forgetful functor U: Elts $(S) \to C$. Passing through f gives a cocone of f(C) over the diagram $f \circ U$, and f being continuous means all such cocones are colimiting.

Lemma 2. For each flat and continuous functor $f : \mathcal{C} \to \mathcal{E}$, there is a unique geometric morphism $q : \mathcal{E} \to \operatorname{Sh}(\mathcal{C}, J)$ (up to natural isomorphism) with $f = q^* \circ i^* \circ y$ (where $i_* : \operatorname{PSh}(\mathcal{C}) \to \operatorname{Sh}(\mathcal{C}, J)$ is the sheafification functor).

Bonus: show that this correspondence gives rise to an equivalence of categories

 $\operatorname{Hom}_{\operatorname{Cat}}^{\operatorname{flat,cont}}(\mathcal{C},\mathcal{E}) \simeq \operatorname{Hom}_{\operatorname{Topos}}(\mathcal{E},\operatorname{Sh}(\mathcal{C},J))$

(this is just checking details, I haven't done it myself yet and I don't think there is anything interesting here).

Exercise 2

(a)

Let $\operatorname{Sh}(X)$ be the topos of sheaves on a topological space X. Recall that a point of $\operatorname{Sh}(X)$ is a geometric morphism $\operatorname{Set} \to \operatorname{Sh}(X)$, and we may identify such points with flat and continuous functors $f : \operatorname{Op}(X) \to \operatorname{Set}$ (note: since $\operatorname{Op}(X)$ has finite limits, f being flat means it preserves finite limits).

- (i) Show that such an f must map each U to either an empty or singleton set. Thus we may consider f an indicator function on Op(X), with corresponding set of opens $S_f = \{U \in Op(X) \mid f(U) = 1\}$.
- (ii) Show that S_f is a filter. That is: (1) $X \in S_f$; (2) $\emptyset \notin S_f$; (3) S_f is closed under finite intersections; (4) S_f is upwards closed (if $U \subseteq V$ and $U \in S_f$, then $V \in S_f$).
- (iii) A filter $S \subseteq Op(X)$ is completely prime if for any $U \in S$ and open cover $U = \bigcup_i U_i, U_i \in S$ for some *i*. Show that S_f is completely prime.

Bonus: show the converse. That is, if S is a completely prime filter of opens in Op(X), then $S = S_f$ for some flat and continuous $f : Op(X) \to \mathbf{Set}$.

(b)

Describe explicitly the category $\operatorname{Hom}_{\operatorname{Topos}}(\operatorname{Set}, \operatorname{Sh}(X))$ of points of $\operatorname{Sh}(X)$ where

- (i) X is the discrete 2-point space,
- (ii) X is the indiscrete 2-point space,
- (iii) X is the Sierpinski space (2 points, one closed, one open).

In each case, justify your answer.