Homework 9

Email: r.d.dawood@students.uu.nl

Group Homology: Given a group G, we let $\mathbb{Z}[G]$ denote the free abelian group on the underlying set of G. Multiplication on G extends to multiplication on $\mathbb{Z}[G]$, and we call this the group ring on G. The morphism $\epsilon : \mathbb{Z}[G] \to \mathbb{Z}$ which sends any $g \in G$ to 1 induces a functor $\epsilon^* : Ab \to \mathbb{Z}[G]$ -Mod, and we have the following adjunction: $()_G : \mathbb{Z}[G]$ -Mod $\to Ab \dashv \epsilon^*$, where for any $\mathbb{Z}[G]$ -module A, we have $(A)_G = \mathbb{Z} \otimes_{\mathbb{Z}[G]} A$.

Let G be a group and A be a $\mathbb{Z}[G]$ -module. We define the group homology of G with coefficients in A (denoted by $H_*(G; A)$) as follows: $H_i(G; A) := L_i()_G(A)$. Note that $H_*(G; \mathbb{Z})$ is isomorphic to the homology of the chain complex we get from the

Note that $H_*(G;\mathbb{Z})$ is isomorphic to the homology of the chain complex we get from the nerve of the category BG (viewing G as a one object category).

Homology of Cyclic Groups

- 1. Consider $G = \mathbb{Z}/n\mathbb{Z} = \{\omega^i : 0 \le i \le n-1\}$. In $\mathbb{Z}/n\mathbb{Z}$, we consider the element $T = \sum_{i=0}^{n-1} \omega^i$ and $N = \omega 1$.
 - (a) Show that the complex

$$\dots \longrightarrow \mathbb{Z}[G] \xrightarrow{\times T} \mathbb{Z}[G] \xrightarrow{\times N} \dots \longrightarrow \mathbb{Z}[G] \xrightarrow{\times T} \mathbb{Z}[G] \xrightarrow{\times N} \mathbb{Z}[G]$$

gives a free resolution of \mathbb{Z} as a trivial $\mathbb{Z}[G]$ -module.

- (b) Calculate $H_k(G; \mathbb{Z})$ for all $k \ge 0$.
- (c) (Bonus Exercise) Calculate $H_*(\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/m\mathbb{Z};\mathbb{Z})$. You can assume the Künneth Formula for group homology.