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In this week’s lecture, we will discuss hypercoverings in sites, which are a generalization
of coverings. Recall last week we proved that if X is a paracompact Hausdorff topological
space, then for every sheaf of abelian groups F on X there is an isomorphism Ȟn(X,F ) ∼=
Hn(X,F ) between Čech cohomology and sheaf cohomology in all degrees n ⩾ 0. But
in general, if X is an object of a site C, Čech cohomology groups don’t coincide with sheaf
cohomology groups. However, one can refine the notion of coverings to that of hypercoverings
and compute the hyper Čech cohomology, which is related to the sheaf cohomology, by the
Verdier hypercovering theorem. We mainly follow the Stacks project chapter 25 ([Sta25, Tag
01FX]) and the ultimate goal of this lecture is to prove the Verdier hypercovering theorem.
Due to time constraints, we will not cover the hypercoverings of spaces and the construction
of hypercoverings, which is the last two sections of the Stacks project chapter 25 ([Sta25,
Tag 01H1] and [Sta25, Tag 094J]). Other classical references are [AGV72, Exposé V, §7] and
[DHI04].

I Semi-representable objects

Definition I.1. Let C be a category. We denote SR(C) the category of semi-representable
objects defined as follows:

(1) objects are families of objects {Ui}i∈I , and
(2) morphisms {Ui}i∈I → {Vj}j∈J are given by a map α : I → J and for each i ∈ I a

morphism fi : Ui → Vα(i) of C.
Let X ∈ Ob(C). The category of semi-representable objects over X is the category

SR(C, X) = SR(C/X).

Note that the objects and morphisms in SR(C, X) are:
(1) objects are families of morphisms {Ui → X}i∈I , and
(2) morphisms {Ui → X}i∈I → {Vj → X}j∈J are given by a map α : I → J and for each

i ∈ I a morphism fi : Ui → Vα(i) over X.
There is a forgetful functor SR(C, X) → SR(C).
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Definition I.2. Let C be a category. We denote F the functor which associates a presheaf
to a semi-representable object. In a formula

F : SR(C) −→ PSh(C)
{Ui}i∈I 7−→ qi∈IyUi

(1)

where yU denotes the representable presheaf associated to the object U .

Given a morphism U → X we obtain a morphism hU → hX of representable presheaves.
Thus we often think of F on SR(C, X) as a functor into the category of presheaves of sets
over hX , namely PSh(C)/hX .

Next we discuss the existence of limits in the category of semi-representable objects.

Lemma I.3. Let C be a category.
(1) the category SR(C) has coproducts and F commutes with them,
(2) the functor F : SR(C) → PSh(C) commutes with limits,
(3) if C has fibre products, then SR(C) has fibre products,
(4) if C has products of pairs, then SR(C) has products of pairs,
(5) if C has equalizers, so does SR(C), and
(6) if C has a final object, so does SR(C).
Let X ∈ Ob(C).
(1) the category SR(C, X) has coproducts and F commutes with them,
(2) if C has fibre products, then SR(C, X) has finite limits and F : SR(C, X) → PSh(C)/hX

commutes with them.

Proof. Proof of the statements about SR(C):
(1) The coproduct of {Ui}i∈I and {Vj}j∈J is {Ui}i∈I q{Vj}j∈J , in other words, the family

of objects whose index set is I q J and for an element k ∈ I q J gives Ui if k = i ∈ I and
gives Vj if k = j ∈ J . Similarly for coproducts of families of objects. It is clear that F
commutes with these.

(2) For U ∈ Ob(C) consider the object {U} of SR(C). Consider a diagram D : J → SR(C)
with a limit limD = {Wk}k∈K in SR(C), then

F (limD)(U) = (
⨿
k∈K

yWk
)(U) =

⨿
k∈K

HomC (U,Wk) = MorSR(C)({U}, limD)

and (lim(F ◦D))(U) = limJ((F ◦D)(j)(U)) = limJ(F (D(j))(U)).

SupposeD(j) = {Vj,m}m∈Jj for each j ∈ J , then F (D(j)) = F
(
{Vj,m}m∈Jj

)
=

⨿
m∈Jj yVj,m

.

Thus F (D(j))(U) =
⨿

m∈Jj HomC (U, Vj,m) = MorSR(C)({U}, D(j)).
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Since the functor MorSR(C)({U},−) : SR(C) → Sets preserves limits, then

lim
J
F (D(j))(U) = lim

J
MorSR(C)({U}, D(j)) = MorSR(C)({U}, limD).

Therefore F (limD)(U) = MorSR(C)({U}, limD) = (lim(F◦D))(U). Since limits of presheaves
are computed at the level of sections, we conclude F (limD) = lim(F ◦D).

(3) Suppose given a morphism (α, fi) : {Ui}i∈I → {Vj}j∈J and a morphism (β, gk) :

{Wk}k∈K → {Vj}j∈J . The fibred product of these morphisms is given by

{
Ui ×fi,Vj ,gk Wk

}
(i,j,k)∈I×J×K

such that j = α(i) = β(k)

The fibre products exist if C has fibre products.
(4) The product of {Ui}i∈I and {Vj}j∈J is {Ui × Vj}i∈I,j∈J . The products exist if C has

products.
(5) The equalizer of two maps (α, fi) , (α

′, f ′
i) : {Ui}i∈I → {Vj}j∈J is

{
Eq

(
fi, f

′
i : Ui → Vα(i)

)}
i∈I,α(i)=α′(i)

The equalizers exist if C has equalizers.
(6) If X is a final object of C, then {X} is a final object of SR(C).
Proof of the statements about SR(C, X):
These follow from the results above applied to the category C/X using that SR(C/X) =

SR(C, X) and that PSh(C/X) = PSh(C)/hX . However we also argue directly as follows. It is
clear that the coproduct of {Ui → X}i∈I and {Vj → X}j∈J is {Ui → X}i∈I q {Vj → X}j∈J
and similarly for coproducts of families of families of morphisms with target X. The object
{X → X} is a final object of SR(C, X). Suppose given a morphism (α, fi) : {Ui → X}i∈I →
{Vj → X}j∈J and a morphism (β, gk) : {Wk → X}k∈K → {Vj → X}j∈J . The fibred product
of these morphisms is given by

{
Ui ×fi,Vj ,gk Wk → X

}
(i,j,k)∈I×J×K

such that j = α(i) = β(k)

The fibre products exist by the assumption that C has fibre products. Thus SR(C, X) has
finite limits. We omit verifying the statements on the functor F in this case.

II Skeleton and coskeleton functors

Recall the category ∆ is the category with
(1) objects [0], [1], [2], . . . with [n] = {0, 1, 2, . . . , n} and
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(2) a morphism [n] → [m] is a nondecreasing map {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}
between the corresponding sets.

Here nondecreasing for a map φ : [n] → [m] means by definition that φ(i) ≥ φ(j) if i ≥ j.
Let ∆≤n denote the full subcategory of ∆ with objects [0], [1], [2], . . . , [n]. Let C be a

category.

Definition II.1. An n-truncated simplicial object of C is a contravariant functor from ∆≤n

to C. A morphism of n-truncated simplicial objects is a transformation of functors. We
denote the category of n-truncated simplicial objects of C by the symbol Simpn(C).

Given a simplicial object U of C the truncation sknU is the restriction of U to the
subcategory ∆≤n. This defines a skeleton functor

skn : Simp(C) −→ Simpn(C) (2)

from the category of simplicial objects of C to the category of n-truncated simplicial objects
of C.

Let C be a category. The coskeleton functor (if it exists) is a functor

coskn : Simpn(C) −→ Simp(C) (3)

which is right adjoint to the skeleton functor. In a formula

MorSimp(C) (U, coskn V ) = MorSimpn(C) (skn U, V )

We let (∆/[n])≤m denote the full subcategory of ∆/[n] consisting of objects [k] → [n] of
∆/[n] with k ≤ m. Given a m-truncated simplicial object U of C we define a functor

U(n) : (∆/[n])opp≤m −→ C (4)

by the rules
([k] → [n]) 7−→ Uk

ψ : ([k′] → [n]) → ([k] → [n]) 7−→ U(ψ) : Uk → Uk′

For a given morphism φ : [n] → [n′] of ∆ we have an associated functor

φ̄ : (∆/[n])≤m −→ (∆/ [n′])≤m

which maps α : [k] → [n] to φ ◦ α : [k] → [n′]. The composition U (n′) ◦ φ̄ is equal to the
functor U(n).
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Lemma II.2. If the category C has finite limits, then coskm functors exist for all m. More-
over, for any m-truncated simplicial object U the simplicial object coskm U is described by
the formula

(coskm U)n = lim
(∆/[n])opp

≤m

U(n) (5)

and for φ : [n] → [n′] the map coskm U(φ) comes from the identification U (n′) ◦ φ̄ = U(n)

above.

Proof. As shown in [Sta25, Tag 0162], Lemma 19.2.

III Homotopies

For every n ≥ 0 we denote ∆[n] the simplicial set

∆[n] : ∆op −→ Sets, [k] 7−→ Mor∆([k], [n]) (6)

Consider the simplicial sets ∆[0] and ∆[1]. Recall that there are two morphisms

e0, e1 : ∆[0] −→ ∆[1],

coming from the morphisms [0] → [1] mapping 0 to an element of [1] = {0, 1}. Note that
each set ∆[1]k is finite. Hence, if the category C has finite coproducts, then we can form the
product

U ×∆[1]

given by (U ×∆[1])n =
⨿

α∈∆[1]n
Un for any simplicial object U of C. Note that ∆[0] has the

property that ∆[0]k = {∗} is a singleton for all k ≥ 0. Hence U × ∆[0] = U . Thus e0, e1
above gives rise to morphisms

e0, e1 : U → U ×∆[1].

Definition III.1. Let C be a category having finite coproducts. Suppose that U and V are
two simplicial objects of C. Let a, b : U → V be two morphisms.

(1) We say a morphism

h : U ×∆[1] −→ V

is a homotopy from a to b if a = h ◦ e0 and b = h ◦ e1.
(2) We say the morphisms a and b are homotopic or are in the same homotopy class if

there exists a sequence of morphisms a = a0, a1, . . . , an = b from U to V such that for each
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i = 1, . . . , n there either exists a homotopy from ai−1 to ai or there exists a homotopy from
ai to ai−1.

The relation ”there is a homotopy from a to b ” is in general not transitive or symmetric; it
is reflexive (See [Sta25, Tag 019J], Example 26.3). While ”being homotopic” is an equivalence
relation on the set Mor(U, V ) and it is the equivalence relation generated by the relation
”there is a homotopy from a to b ”. It turns out we can define homotopies between pairs of
maps of simplicial objects in any category.

IV Hypercoverings

Definition IV.1. Let C be a site. Let f = (α, fi) : {Ui}i∈I → {Vj}j∈J be a morphism in
the category SR(C). We say that f is a covering if for every j ∈ J the family of morphisms
{Ui → Vj}i∈I,α(i)=j is a covering for the site C. Let X be an object of C. A morphism K → L

in SR(C, X) is a covering if its image in SR(C) is a covering.

Lemma IV.2. Let C be a site. (1) A composition of coverings in SR(C) is a covering.
(2) If C has fibre products and K → L is a covering in SR(C) and L′ → L is a morphism,

then L′ × LK exists and L′ ×L K → L′ is a covering.
(3) If C has products of pairs, and A → B and K → L are coverings in SR(C), then

A×K → B × L is a covering.
Let X ∈ Ob(C). Then (1) and (2) holds for SR(C, X) and (3) holds if C has fibre products.

Proof. Homework Exercise VII.1.

By Lemma I.3 and Lemma II.2, the coskeleton of a truncated simplicial object of SR(C, X)

exists if C has fibre products.

Definition IV.3. Let C be a site. Assume C has fibre products. Let X ∈ Ob(C) be an object
of C. A hypercovering of X is a simplicial object K of SR(C, X) such that

(1) The object K0 is a covering of X for the site C.
(2) For every n ≥ 0 the canonical morphism

Kn+1 −→ (coskn sknK)n+1 (7)

is a covering in the sense defined above.

Condition (1) makes sense since each object of SR(C, X) is after all a family of morphisms
with target X.
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Remark IV.4. By Lemma II.2, (coskn sknK)n+1 = lim(∆/[n+1])op≤n
sknK(n + 1). Thus by

the universal property of limits, the morphism (7) is given by a collection of morphisms
{γ(α) : Kn+1 −→ (sknK)k = Kk}, where α ranges over α : [k] −→ [n+ 1] with k ≤ n.

Example IV.5. (Čech hypercoverings). Let C be a site with fibre products. Let {Ui → X}i∈I
be a covering of C. Set K0 = {Ui → X}i∈I . Then K0 is a 0-truncated simplicial object of
SR(C, X). Hence we may form

K = cosk0K0

Clearly K passes condition (1) of Definition IV.3. Since all the morphisms Kn+1 →
(coskn sknK)n+1 are isomorphisms by [Sta25, Tag 0AMA], Lemma 19.10, it also passes
condition (2). Note that the terms Kn are

Kn = (cosk0K0)n = lim(∆/[n])op≤0
K0(n) =

n∏
j=0

K0

= {Ui0 ×X Ui1 ×X . . .×X Uin → X}(i0,i1,...,in)∈In+1

A hypercovering of X of this form is called a Čech hypercovering of X.

Example IV.6. (Hypercovering by a simplicial object of the site). Let C be a site with fibre
products. Let X ∈ Ob(C). Let U be a simplicial object of C. As usual we denote Un = U([n]).
Finally, assume given an augmentation

a : U → X,

i.e. a morphism from the simplicial object U into the constant simplicial object X. In this
situation we can consider the simplicial object K of SR(C, X) with terms Kn = {Un → X}.
Then K is a hypercovering of X in the sense of Definition IV.3 if and only if the following
three conditions hold:

(1) {U0 → X} is a covering of C,
(2) {U1 → U0 ×X U0} is a covering of C,
(3)

{
Un+1 → (coskn sknU)n+1

}
is a covering of C for n ≥ 1.

We omit the straightforward verification. Note that as C has fibre products, the category
C/X has all finite limits. Hence the required coskeleta exist by Lemma II.2.

Example IV.7. (Čech hypercovering associated to a cover). Let C be a site with fibre
products. Let U → X be a morphism of C such that {U → X} is a covering of C. Consider
the simplical object K of SR(C, X) with terms

Kn = {U ×X U ×X . . .×X U → X} (n+ 1 factors )
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Then K is a hypercovering of X. This example is a special case of both Example IV.5 and
Example IV.6.

V Čech cohomology and hypercoverings

Let C be a site. For a presheaf of sets F we denote ZF the presheaf of abelian groups defined
by the rule

ZF(U) = free abelian group on F(U)

We will sometimes call this the free abelian presheaf on F . Of course the construction
F 7→ ZF is a functor and it is left adjoint to the forgetful functor PAb(C) → PSh(C). Of
course the sheafification Z#

F is a sheaf of abelian groups, and the functor F 7→ Z#
F is a left

adjoint as well. We sometimes call Z#
F the free abelian sheaf on F .

For an object X of the site C we denote ZX the free abelian presheaf on yX , and we
denote Z#

X its sheafification.

Definition V.1. Let C be a site. Let K be a simplicial object of PSh(C). By the above we
get a simplicial object Z#

K of Ab(C). We can take its alternating face map complex1 C•Z
#
K

with CnZ
#
K := Z#

Kn
. The homology of K is the homology of the complex of abelian sheaves

C•Z
#
K.

In other words, the ith homology Hi(K) of K is the sheaf of abelian groups Hi(K) =

Hi(C•Z
#
K). In this section we worry about the homology in case K is a hypercovering of an

object X of C.

Lemma V.2. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X. The homology of the simplicial presheaf F (K) is 0 in degrees > 0 and
equal to Z#

X in degree 0 .

Proof. See [Sta25, Tag 01GA] Lemma 4.5.

Let C be a site. Consider a presheaf of abelian groups F on the site C. It defines a
functor

F : SR(C)op −→ Ab

{Ui}i∈I 7−→
∏
i∈I

F (Ui)

Thus a simplicial object K of SR(C) is turned into a cosimplicial object F(K) of Ab. The
cochain complex C•(F(K)) associated to F(K) is called the Čech complex of F with respect

1See Construction 1.3 of Lecture 10.
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to the simplicial object K. We set

Ȟ i(K,F) = H i(C•(F(K))).

and we call it the ith Čech cohomology group of F with respect to K. In this section we
prove analogues of some of the results for Čech cohomology of open coverings.

Lemma V.3. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X. Let F be a sheaf of abelian groups on C. Then Ȟ0(K,F) = F(X).

Proof. Homework Exercise VII.2.

Lemma V.4. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X. Let I be an injective sheaf of abelian groups on C. Then

Ȟp(K, I) =

{
I(X) if p = 0

0 if p > 0

Proof. Observe that for any object Z = {Ui → X} of SR(C, X) and any abelian sheaf F on
C we have

F(Z) =
∏

F (Ui)

=
∏

MorPSh(C) (yUi
,F)

= MorPSh(C)(F (Z),F)

= MorPAb(C)
(
ZF (Z),F

)
= MorAb(C)

(
Z#

F (Z),F
)
,

where F is the functor defined in Definition I.2. Thus we see, for any simplicial object K of
SR(C, X) that we have

C•(F(K)) = HomAb(C)

(
C•Z

#
F (K),F

)
The complex of sheaves C•Z

#
F (K) is quasi-isomorphic to Z#

X (the chain complex concentrated
in degree 0) if K is a hypercovering, as implied by Lemma V.2. Since I is an injective abelian
sheaf, HomAb(C) (−,F) preserves quasi-isomorphism. Then the complex C•(I(K)) is acyclic
except possibly in degree 0 . In other words, we have

Ȟ i(K, I) = 0

for i > 0. Combined with Lemma V.3 the lemma is proved.
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VI Verdier Hypercovering Theorem

Lemma VI.1. Let C be a site with fibre products. Let X be an object of C. If K,L are
hypercoverings of X, then K × L is a hypercovering of X.

Proof. This can be proved directly by Definition IV.3. Note that (K×L)n = Kn×X Ln.

Lemma VI.2. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X. Let k ≥ 0 be an integer. Let u : Z → Kk be a covering in SR(C, X).
Then there exists a morphism of hypercoverings f : L → K such that Lk → Kk factors
through u.

Proof. See [Sta25, Tag 01GG], Lemma 7.3.

Lemma VI.3. Let C be a site with fibre products. Let X be an object of C. Let K,L be
hypercoverings of X. Let a, b : K → L be morphisms of hypercoverings. There exists a
morphism of hypercoverings c : K ′ → K such that a ◦ c is homotopic to b ◦ c.

Proof. See [Sta25, Tag 01GO], Lemma 9.2.

Let C be a site with fibre products. Let X be an object of C. Let F be a sheaf of
abelian groups on C. Let K,L be hypercoverings of X. If a, b : K → L are homotopic maps,
then F(a),F(b) : F(K) → F(L) are homotopic maps ([Sta25, Tag 019U], Lemma 28.4).
Hence they have the same effect on cohomology groups of the associated cochain complexes
([Sta25, Tag 019U], Lemma 28.6). We are going to use this to define the colimit over all
hypercoverings.

Definition VI.4. Denote HC(C, X) the category whose objects are hypercoverings of X and
whose morphisms are maps between hypercoverings of X up to homotopy. Consider the
diagram

Ȟ i(−,F) : HC(C, X)opp −→ Ab

and the ith hyper Čech cohomology group of F with respect to K is the colimit:

Ȟ i
HC(X,F) = colimK∈HC(C,X) Ȟ

i(K,F)

Theorem VI.5. (Verdier Hypercovering Theorem). Let C be a site with fibre products. Let
X be an object of C. Let i ≥ 0. The functors

Ab(C) −→ Ab

F 7−→ H i(X,F)

F 7−→ Ȟ i
HC(X,F)
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are canonically isomorphic.

Proof. We have seen the result for i = 0, as implied by Lemma V.3. We also know that
the hyper Čech cohomology is zero on injective sheaves by Lemma V.4. Since the functors
H i(X,−) form a universal δ-functor, then in order to prove the theorem it suffices to show
that the sequence of functors H̆ i

HC(X,−) forms a δ-functor.
Let 0 → F → G → H → 0 be a short exact sequence of abelian sheaves on C. Let

ξ ∈ Ȟp
HC(X,H). Choose a hypercovering K of X and an element σ ∈ H (Kp) representing

ξ in cohomology. There is a corresponding exact sequence of complexes

0 → C•(F(K)) → C•(G(K)) → C•(H(K)),

but we are not assured that there is a zero on the right also and this is the only thing that
prevents us from defining δ(ξ) by a simple application of the snake lemma. Recall that

H (Kp) =
∏

H (Ui)

if Kp = {Ui → X}. Let σ =
∏
σi with σi ∈ H (Ui). Since G → H is a surjection of

sheaves we see that there exist coverings {Ui,j → Ui} such that σi|Ui,j
is the image of some

element τi,j ∈ G (Ui,j). Consider the object Z = {Ui,j → X} of the category SR(C, X) and its
obvious morphism u : Z → Kp. It is clear that u is a covering. By Lemma VI.2 there exists
a morphism L → K of hypercoverings of X such that Lp → Kp factors through u. After
replacing K by L we may therefore assume that σ is the image of an element τ ∈ G (Kp).
Note that d(σ) = 0, but not necessarily d(τ) = 0. Thus d(τ) ∈ F (Kp+1) is a cocycle. In this
situation we define δ(ξ) as the class of the cocycle d(τ) in Ȟp+1

HC (X,F).
At this point there are several things to verify:
(a) δ(ξ) does not depend on the choice of τ ,
(b) δ(ξ) does not depend on the choice of the hypercovering L → K such that σ lifts,

and
(c) δ(ξ) does not depend on the initial hypercovering and σ chosen to represent ξ.
We omit the verification of (a), (b), and (c); the independence of the choices of the

hypercoverings really comes down to Lemma VI.1 and Lemma VI.3. We also omit the
verification that δ is functorial with respect to morphisms of short exact sequences of abelian
sheaves on C.

Finally, we have to verify that with this definition of δ our short exact sequence of abelian
sheaves above leads to a long exact sequence of Čech cohomology groups. First we show that
if δ(ξ) = 0 (with ξ as above) then ξ is the image of some element ξ′ ∈ Ȟp

HC(X,G). Namely,
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if δ(ξ) = 0, then, with notation as above, we see that the class of d(τ) is zero in Ȟp+1
HC (X,F).

Hence there exists a morphism of hypercoverings L → K such that the restriction of d(τ)
to an element of F (Lp+1) is equal to d(v) for some v ∈ F (Lp). This implies that τ |Lp

+ v

form a cocycle, and determine a class ξ′ ∈ Ȟp(L,G) which maps to ξ as desired.
We omit the proof that if ξ′ ∈ Ȟp+1

HC (X,F) maps to zero in Ȟp+1
HC (X,G), then it is equal

to δ(ξ) for some ξ ∈ Ȟp
HC(X,H).

Note that there is another proof of the Verdier Hypercovering Theorem by using spectral
sequences, see [Sta25, Tag 01GZ], Theorem 10.1.

VII Homework exercises

Exercise VII.1. Prove Lemma IV.2:
Let C be a site. (1) A composition of coverings in SR(C) is a covering.
(2) If C has fibre products and K → L is a covering in SR(C) and L′ → L is a morphism,

then L′ × LK exists and L′ ×L K → L′ is a covering.
(3) If C has products of pairs, and A → B and K → L are coverings in SR(C), then

A×K → B × L is a covering.
Let X ∈ Ob(C). Then (1) and (2) holds for SR(C, X) and (3) holds if C has fibre

products.

Exercise VII.2. Prove Lemma V.3:
Let C be a site with fibre products. Let X be an object of C. Let K be a hypercovering of

X. Let F be a sheaf of abelian groups on C. Then Ȟ0(K,F) = F(X).
(Hint: The hypercovering condition requires that the canonical map K1 → K0 ×X K0 is

a covering in SR(C, X). This means K1 can be written as K1 =
⨿

i0,i1∈I
⨿

j∈J {Vi0i1j → X}
where each Vi0i1j → Ui0 ×X Ui1 is a covering in C.)
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