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1. The Fundamental Group in Topology

This lecture will be about the pro-fundamental group of a topos. We give a short
overview of the fundamental group π1(X, x) of a topological space X. A common
way of describing π1(X, x) is as the group of loops at the fixed point x ∈ X up
to homotopy. Note that having an interval object is crucial for working with loops,
when working with a topos this does not function well. Therefore we will characterize
π1(X, x) in the following way.

We recall from topology that a covering space for X is a space X̃ and a mor-
phism p : X̃ → X such that any x ∈ X has an open neighborhood U for which
p−1(U) is a disjoint union of open sets in X̃, such that each open set is projected
homeomorphically onto U by p.

When a topological space is nice enough, in particular locally pathconnected semi-
locally simply connected, we get a correspondence between subgroups of the funda-
mental group and covering spaces of X.

We remark that something similar happens with Galois extensions L/K and the
Galois group Gal(L/K) in field theory: intermediate field extensions correspond to
subgroups of Gal(L/K).

Recall that locally constant sheaves correspond to covering spaces (consider sec-
tions to p), so the fundamental group of a topological space can be seen as the group
classifying locally constant sheaves on X. This will be the idea behind our definition
of the pro-fundamental group of a topos.

The pro-fundamental group of a topos can be seen as a generalization in two
directions. Firstly, it can be seen as a rephrasing of the fundamental group of a
topos in the more general topos-theoretic language. Secondly, we can view it as a
generalization of the fundamental group of nice topological spaces to the fundamental
group of spaces that are not nice. For such a topological space, we cannot find a
fundamental group, but we can find a weaker kind of object, a pro-group.

2. Ind- and Pro-Objects

We now introduce pro-objects, the pro-fundamental group of a topos will be a
pro-object in the category of groups.

We will first discuss ind-objects; ind-objects are the dual notion to pro-objects.
We will see that the treatment of ind-objects is easier that that of pro-objects,
so obtaining pro-objects by dualizing the construction of ind-objects will be our
approach.
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Let C be a small category, and y : C → Psh(C) the Yoneda embedding. Recall
the universal property of the presheaf topos Psh(C): For any cocomplete category
D and functor C → D, there is a functor colimit preserving functor Psh(C) → D,
unique up to unique isomorphism, such that the following diagram commutes up to
isomorphism:

C Psh(C)

D

F

y

∃!F̄

That is, Psh(C) is the free colimit completion of C. We could also give a different
description of the free colimit completion of C. Recall that we can view any presheaf
F as the colimit of representables, so F = colimi∈I y(xi). Therefore, we could also
define Psh(C) as the category containing all F = colimi∈I y(xi) for any diagram I.
Suppose that instead of considering the general free colimit completion of C, we

are interested in free filtered colimit completion of C.
Definition 1 (filtered diagram). A category I is filtered if the following holds:

• I is nonempty,
• For any i, j ∈ I there is k ∈ I such that i→ k ← j,
• For each parallel pair a, b : i→ j there is an arrow j → k equalizing the pair.

A presheaf F is filtered when we can write F = colimi∈I y(xi), for I filtered.

Proposition 2. Filtered colimits commute with finite limits in Set.

Note that this implies that cofiltered limits commute with finite colimits in any
presheaf topos, and hence in any Grothendieck topos (a Grothendieck topos is a
reflexive subcategory of the presheaf topos on the site).

We make the following remark: F = colimi∈I y(xi) if filtered if and only if the
category Elts(F ) ∼= (y ↓ F ) is filtered. To sketch the proof of this: If F is filtered,
then I is equivalent to the category of elements which is filtered. If Elts(F ) is
filtered, then we can write F ∼= lim(x,s)∈Elts(F ) y(x) making F a filtered colimit of
representables.

Definition 3 (Ind(C)). We define the category Ind(C) in the following way:

• An Ind-object of C is a filtered diagram I → C.
• We define morphisms in Ind(C) as

HomInd(C)(colimi∈I xi, colimj∈J zj) ∼= lim
i∈I

HomC(xi, colimj∈J zj)

∼= lim
i∈I

colimj∈J HomC(xi, zj)

The first step here follows because the contravariant Hom takes colimits to
limits in the first variable, the second step follows from the Yoneda lemma.
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We could also view Ind(C) as the full subcategory of Psh(C) consisting of presheaves
F that can be written as a filtered colimit of representables.

Note that the Yoneda embedding restricts to C y→ Ind(C). We get the following
universal property of Ind(C): If a category D has filtered colimits and F : C → D pre-
serves filtered colimits, then there is a functor F̄ , unique up to unique isomorphism,
such that the following commutes up to isomorphism:

C Ind(C)

D

F

y

∃!F̄

We end our discussion of Ind-objects with an example.

Remark 4. Let Setfin be the category of finite sets. We show that the category
Ind(Setfin) is equivalent to Set. Take any filtered diagram I → Setfin. Note that we
can write any set as the colimit of finite sets, and a morphism in Ind(Setfin) induces
a morphism between the colimits. This gives the equivalence.

We move to pro-objects. By dualizing the definition of filtered, we get a notion of
being cofiltered.

Definition 5. A category I is cofiltered if the following holds:

• I is nonempty,
• For any i, j ∈ I there is k ∈ I such that i← k → j,
• For each parallel pair a, b : i→ j there is an arrow k → i equalizing the pair.

Now F ∈ Psh(Cop)op is cofiltered in a category C when we can write F ∼= limi∈I k(xi),
for I cofiltered.

Note that when a category Iop is cofiltered, then I is filtered. When F is a
cofiltered limit of representables by k in (Psh(Cop))op, then F is a filtered colimit of
representables by y in Psh(C).

We can now rephrase Proposition 2 as follows:

Proposition 6. Cofiltered limits commute with finite colimits in Setop.

We have constructed Ind(C) as the free filtered colimit completion of C; we want
to construct Pro(C) as the free cofiltered limit completion of C. We define

Pro(C) := (Ind(Cop))op.

When defining Ind(C), we used the contravariant Yoneda embedding y : C →
Psh(C), X 7→ Hom(,X). Because we are dualizing the construction, we now need to
use the covariant k : C → (Psh(Cop))op ∼= Hom(Cop, Setop).
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Note that Setop is very different from Set, for example it is not a topos. We remark
that Setop is equivalent to the category of complete atomic boolean algebras (power
sets).

Now we want Pro(C) to be the full subcategory of (Psh(Cop))op consisting of
presheaves F ∼= limi∈I k(xi) that are a cofiltered limit of a representable for the
covariant Yoneda embedding.

Phrased differently: an object of Pro(C) is a cofiltered diagram I → C. A mor-
phism of Pro(C) is defined as

HomPro(C)((Xi)i∈I , (Yj)j∈J) ∼= Hom(Psh(Cop))op(lim
i
Xi, lim

j
Yj)

∼= lim
j

colimi HomC(Xi, Yj).

We can also express the situation with Pro(C) as a universal property. Let F :
C → D be a functor into a category D with cofiltered limits, then there is a functor F̄ ,
unique up to unique isomorphism, making the following commute up to isomorphism:

C Pro(C)

D
F

k

F̄

Recall that X ∈ C represents a functor F when F ∼= HomC(−, X).

Definition 7 (Pro-representable). A functor F is pro-representable by a pro-object
X if F ∼= HomPro(C)(−, X).

Note that any representable functor is in particular pro-representable. That is, we
have inclusions

C → Pro(C)→ Psh(C).

Remark 8. We show that Pro(Setfin) is equivalent to the category TopTDCH of to-
tally disconnected compact Hausdorff topological spaces. Note that we have a functor
disc : Setfin → Top which equips a finite set with the discrete topology. We know that

Top is complete, so we get a cofiltered limit preserving functor disc : Pro(Setfin)→
Top. Checking that the essential image of disc corresponds to TopTDCH , and that
disc gives an equivalence between TopTDCH and Pro(Setfin) is left as an exercise.

A short remark: an alternative approach to using pro-groups is the use of locales.
A locale is a generalization of a topological space, in which we can take the limit of
a progroup without losing information. We can say: a progroup is a group object in
the category of locales. A lot of the literature on progroups is written in the language
of locales.
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3. The Classifying Topos of a Pro-Group

Definition 9 (Projective system). A collection of groups G = {Gi}i∈I , with I a
directed poset (now I is cofiltered when viewed as a category), is called a projective
system when we have maps fij : Gj → Gi for all i ∈ I satisfying the following
conditions:

(1) fii = idGi
for all i ∈ I,

(2) fik = fijfjk for all i ≤ j ≤ k.

Note that G forms a pro-group.
When all fij are surjective, we call G a strict projective system.

We remark that by taking I a directed poset, instead of any cofiltered category,
we do not lose any generality. It is a fact that every cofiltered category admits a final
functor from a directed set (recall that a functor F is final if restricting diagrams
along F does not change their colimit). Hence we can replace a cofiltered category
with a directed set.

Take some set E. We can define a left-action of G on E in the following way. First
we take a family of sets (Ei)i ⊆ E such that

⋃
iEi = E. We now take for each i

an action ρi : Gi × Ei → Ei of Gi on the set Ei. For this action, we demand the
following: for j ≥ i, the set of fixed points of the kernel of the group homomorphism

Gj
fij→ Gi is the set Ei ⊆ Ej. That is, Fix(Ker(fij)) = Ei.
Sets equipped with a left G-action form a category, the classifying topos of G which

we will denote BG, in the following way. Objects are pairs (E, (Ei)i) with
⋃

i Ei = E
and for each i a left action of Gi on Ei. A morphism f : (E, (Ei)i) → (F, (Fi)i)
consists of a map f : E → F such that for every i ∈ I, f(Ei) ⊆ Fi, and that for all
i, x ∈ Ei, g ∈ Gi we have f(x · g) = g · f(x).

By applying Girauds criterion, we see that BG is in fact a topos.

Remark 10. Suppose that we have a strict projective system of groups G = (Gi)i in
which all groups Gi are finite. We can get a concrete handle on what the resulting
progroup (a profinite group) looks like in this case: G will be a topological group which
is compact Hausdorff totally disconnected.

In the following, we will define an appropriate strict projective system of groups G
such that the classifying topos BG is the quotient topos of locally constant objects
in E ; recall that in the topological case, a locally constant sheaf corresponds to a
covering space over X. We will then define the pro-fundamental group of E to be G.
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4. Locally Constant Objects

Let E be a topos with terminal object 1. We take S to be a point topos, that is a
topos isomorphic to Set. Recall that we have a unique geometric morphism

γ : E → S,
with γ∗ : I →

∐
i∈I 1 called the constant object functor, and γ∗ : X 7→ ΓE(X) :=

HomE(1, X) the global sections functor.
Note that for γ to be unique, we only need to show that γ∗ is unique. We know

that γ∗ takes the terminal object in E to the singleton and γ commutes with colimits,
every set is a colimit of the singleton, and thus γ is unique.
We recall the following connectedness definitions for a topos.

Definition 11 (Cover of a topos). A family {fi : Ui → U}i∈I is called epimorphic
when for any two morphisms g, h with domain U we have that (∀i ∈ I)(gfi = hfi)
implies g = h.

A cover for a topos is an epimorphic family {Ui → 1}i∈I .

Note that in a topos (or more generally, in a category with I-coproducts), a family
{fi : Ui → U}i∈I is epimorphic if and only if the canonical morphism

∐
i∈I Ui → U

is an epimorphism. Note that considering the family of morphisms instead of the
coproduct has the advantage that the coproduct may not exist in the underlying site,
but the morphisms in the family do exist in the site. For notational simplicity, we
will in the following also consider a cover as some epimorphism U → 1.

Definition 12 (Locally connected). We call E locally connected if the inverse image
functor γ∗ has a left adjoint, which we will denote by γ!.

Definition 13 ((Semi-locally) connected). We call E connected if the inverse image
functor γ∗ is fully faithful.

We call E semi-locally connected when there is a cover {Ui}i∈I of E such that E/Ui

is a connected topos for all i ∈ I.

It can be shown that for E the topos of sheaves on a topological space X, E is
connected as a topos if and only if X is connected as a topological space.

Proposition 14. Suppose E is locally connected, so we have γ! ⊣ γ∗. Now E is
connected if and only if γ! preserves the terminal object.

Proof. From the adjunction γ! ⊣ γ∗, we get the counit ϵ : γ! ◦ γ∗ → idS . Suppose γ∗

is fully faithful, then ϵ is an isomorphism and γ!(1) ∼= γ!(γ
∗(1)) ∼= 1.

Now suppose that γ! preserves 1. Now we have

γ!(γ
∗(A)) ∼= γ!(γ

∗(
∐
a∈A

1)) ∼=
∐
a∈A

γ!(γ
∗(1)) ∼=

∐
a∈A

1 ∼= A
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so ϵ is an isomorphism and γ∗ is fully faithful. □

Remark 15. In these definitions, we could replace the point topos S by some other
topos F , giving rise to the notion of F-connectedness of a topos.

We now give a definition of locally constant objects in a general topos.

Definition 16 (U -Split). Take X an object of a topos E, and let U = {Ui}i∈I be a
cover of E. We say that X is U-split, when there exists a family of sets {Si}i∈I , such
that there is an isomorphism

θi : γ
∗Si × Ui → X × Ui

in E/Ui for each i ∈ I.

We denote the collection of all U−split object by Split(U) := {X | X U -split},
and let Split(E) denote the union

⋃
U a cover Split(U).

Definition 17 (Locally constant object). We call an object X ∈ E locally constant,
if X is U−split for some cover U .

We call X (globally) constant when X ∼= γ∗(S) for some set S.

Using locally constant objects, we can say when a topos is simply connected.

Definition 18 (Simply connected topos). We call a topos E simply connected if E
is connected, and any locally constant object of E is globally constant.

We call E locally simply connected when there is a cover {Ui}i∈I of E such that
E/Ui is a simply connected topos for all i ∈ I.

5. The Topos of Locally Constant Objects

In the following, we assume E to be connected locally connected. Some terminol-
ogy: we call F ⊂ E a quotient topos of E when the inclusion is the inverse image of
a geometric morphism E → F (and thus preserves finite limits).

Proposition 19. For any cover U of E, Split(U) ⊂ E is a quotient topos with inverse
image E → Split(U) given by the inclusion.

Moreover, Split(U) is a boolean topos, that is, any object of the topos has a com-
plement.

We remark that Split(U) is connected, whenever E is.
We collect all locally constant objects in the set

GLC(E) := {X ∈ E | X locally constant}.

Proposition 20. GLC(E) ⊂ E is a topos, with as inverse image the inclusion.
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As we will see, GLC(E) is in fact a so-called Galois topos, We will now describe
how to construct GLC(E) as a certain limit.

Let Cov(E) be the set containing all coverings U of E . We can equip Cov(E) with
a refinement partial order in the following way:

U ≤ V if and only if there is a map U → V.

It is an easy exercise to show that Cov(E) is in fact a directed poset.
We now get the following diagram:

Split(Ui)← Split(Uj)← ...← GLC(E)← E .
Now the topos GLC(E) arises as the inverse limit of toposes indexed by the directed
poset Cov(E).

6. The Pro-Fundamental Group of a Topos

As next step towards defining the pro-fundamental group of E , we define Galois
toposes. From now on, we also suppose that E is pointed, so we have a geometric
morphism f : S → E .

For any object X ∈ E , we can consider its automorphism group Aut(X).

Definition 21 (Galois object). An object A ∈ E is a Galois object, when it is non-
empty, connected, and it is an Aut(A)−torsor.

This definition unfolds as follows. An object A ∈ E is an Aut(A)−torsor, when
A × γ∗(Aut(A)) → A × A, (a, φ) 7→ (a, φ(a)), is an isomorphism. An object A is
non-empty when it is not the initial object, and A is connected when A → 1 is an
epimorphism.

Definition 22 (Galois topos). A topos is generated by an object A if for every X ∈ E,
there is an epimorphism A→ X.
A Galois topos is a connected locally connected topos generated by its Galois objects.

Proposition 23. For any cover U of E, Split(U) is a Galois topos, and

Split(U) ∼= BAut(A)op

for some Galois object A ∈ E representing the point (so f ∗ ∼= [A,−] : Split(U) →
Set).

We have characterized GLC(E) via the diagram

Split(Ui)← Split(Uj)← ...← GLC(E)← E ,
which we can now write as

BAut(Ai)
op ← BAut(Aj)

op ← ...← GLC(E)← E .
Hence, limi BAut(Ai)

op = GLC(E).
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We now use the following theorem by Moerdijk:

Theorem 24 (Inverse Limit Theorem). Let {Gi}i be an inverse filtered system of
groups. Now

lim
i
BGi

∼= B lim
i
Gi.

Using this theorem, we get B limi Aut(Ai)
op = GLC(E). We now define π1(E , f)

to be the pro-group limi Aut(Ai)
op.

7. Optional Homework

(1.) Finish the proof of Remark 8.
(2.) Let X be a topological space, and Sh(X) the topos of sheaves on X. Show

that X is connected as topological space, if and only if Sh(X) is connected as topos.
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