
GROTHENDIECK’S GALOIS THEORY

1. Classical Galois theory

These notes closely follow [DV00]. Last week Deik used the topos theoretical version of Grothendieck’s
Galois theory to construct the fundamental group of a topos. This week we will focus on the profinite
case, originally developed by Grothendieck to construct the étale fundamental group of a scheme
[GR04].

The goal of this talk will be to sketch the proof of, and hopefully motivate, Grothendieck’s Galois
correspondence. To start with, we recall the classical Galois correspondence.

Definition 1. A finite field extension K/F is Galois over F if #Aut(K/F ) = [K : F ]. Its corre-
sponding group of automorphisms is denoted Gal(K/F ) = {σ : K → K|σx = x ∀x ∈ F}.

Theorem 1 (The Galois correspondence). Let K/F be a Galois extension and G := Gal(K/F ).
Then there is an order reversing correspondence between the intermediate field extensions F ⊆ L ⊆
K and the subgroups of Gal(K/F ) given by:

L 7−→ Aut(K/L)

Fix(H) 7−→H

where Fix(H) = {x ∈ K|σ(x) = x∀σ ∈ H}.

We can reformulate this categorically by defining what it means for a group to act on an object
A of a category C. From now on let C be a category and A ∈ Ob(C).

Definition 2 (Group action). Let H ∈ Grp. A left action H on A is a group homomorphism
α : H → Aut(A)

op
.

Definition 3 (Quotienting by actions). The quotient of A by H is a morphism q : A → A/H in

C such that q ◦ α(h) = q for all h ∈ H such that for all A
x−→ X such that x ◦ α(h) = x there exists

a unique φ : A/H → X such that

A A/H

X

q

x
!φ

commutes.

Remark 1. Quotienting by a group action can be seen as taking a certain (finite) colimit.

Example 1. Let ExtK/F be the category of intermediate field extensions F ⊆ L ⊆ K. Then for
any subgroup H ≤ Gal(K/F ) the fixed field of H, Fix(H) is the quotient K/H. To see this, note
that Fix(H) is the largest subfield of K fixed by H. I.e. the largest subfield such that for all h ∈ H,
h ◦ i = i where i : Fix(H) ↪→ K is the inclusion. Reformulating this in terms of ExtopK/F , the map

K → Fix(H) is the quotient of K by H.
1
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In light of this example, we can reformulate the Galois correspondence in terms of these categori-
cal group actions. First note that given an L ∈ ExtopK/F , [K,L] is a transitive G := Aut(K/F )op-Set

under the action

G× [K,L] → [K,L], (g, x) 7→ x ◦ g.
We will denote this G-Set by [K,L]G. Thus we can reformulate the Galois correspondence as:

Theorem 2 (Reformulated Galois correspondence). Let K/F be Galois and G := Gal(K/F ) then
there is an equivalence of categories,

ExtopK/F G− Settrans

[K,−]G

K/−

One can construct such an equivalence for a more general class of categories. Let C be a category
and A an object in C. Suppose that for all X ∈ Ob(C), [A,X]G is a transitive G = Aut(A)op-Set.
Note that for any S ∈ G− Settrans and x0 ∈ S, S ∼= G/Fix(x0). We can construct its left adjoint
as follows:

Construction 1 (The left adjoint). We will show that the functor [A,−]G : C → G − Settrans

has a left adjoint. As pointed out in the lecture, we assume C has quotients. By noting that G
itself is a G-Set with one generator, for any E ∈ G − Settrans there is a 1 − 1 correspondence
between the elements of E and G-equivariant maps G → E given by (x ∈ E) 7−→ φ where φ
is the map given by e 7→ x. Now take E = [A,X]G for any object X in C. Again taking any
G-Set S and H = Fix(x0) for x0 ∈ S, by the universal property of the quotient by an action,
A → X factors through A/H if and only if G → [A,X]G factors through G → G/H ∼= S. As
a result HomC(A/H,X) ∼= HomG−Settrans(S, [A,X]G). So the functor [A,−]G has a left adjoint
A/− : S 7→ A/Fix(x0) where x0 ∈ S:

C G− Settrans.

[K,−]G

K/−

⊣

Before we put conditions on C such that this adjunction becomes an equivalence, we need to
define what it means to be a strict epimorphism. We call f : X → Y an effective epimorphism if it
is the coequalizer of its kernel pair.

In a category without pullbacks, we still want such a notion, and hence reexpress it in terms of
its universal property, we call this a strict epimorphism.

Definition 4 (Strict epimorphism). A morphism f : X → Y is strictly epimorphic if for any
g : X → Z such that for all x, y : C → X, g ◦ x = g ◦ y implies that f ◦ x = f ◦ y then there exists a
unique h : Y → Z such that g = h ◦ f .

A strict epimorphism is also an epimorphism, and a strictly epic monic is an iso. As we will see,
in the representable case a strict epimorphism plays the role of a quotient of some distinguished
object A by a subgroup of Aut(A)op.

Theorem 3 (Representable Galois correspondence). Let C be a category and A an object in C
such that:
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(1) For all X in C there exists an arrow A→ X and every arrow A→ X is a strict epimorphism
(2) For any H ≤ Aut(A) the quotient A/H exists and is preserved by [A,−]
(3) [A,A] = Aut(A).

Then the adjunction:

C G− Settrans.

[K,−]G

K/−

⊣

is an equivalence.

Proof. This proof is Remark 2.7 and the proofs of Proposition 2.8 and Proposition 3.6 in [DV00].
We will show that the unit and counit maps are isomorphisms.

For any G-Set E the unit map is given by η : E → [A,A/Fix(x0)] where x0 ∈ E. We can show
directly that E exhibits the universal property of the quotient [A,A]/Fix(x0) and hence the two are
isomorphic. Moreover, the second axiom says precisely that the natural map [A,A]/H → [A,A/H]
is an isomorphism. By composing these two isomorphisms we see that the unit is an isomorphism.

For any X ∈ Ob(C), the counit map is given by ϵ : A/H → X. To show this is an isomorphism
consider any x : A → X. Since by the third axiom [A,A] = Aut(A) we can show that the map x
factors through [A,A]/Fix(x) as an epimorphism p : [A,A] → [A,A]/Fix(x0) and a monomorphism
ψ : [A,A]/H → [A,A/H]. In fact, the following diagram commutes:

[A,A] [A,A/Fix(x0)] [A,X]

[A,A]/Fix(x0)

q∗

x∗

ϵ∗

η

where q : A → A/H is the quotient map and η is the unit. Therefore since ψ is injective and η is
an isomorphism, ϵ∗ is injective.

Now note that by the first axiom [A,−] is faithful. For if f, g : X → Y such that f∗ = g∗ then
any a : A → X equalizes (f, g). By the first axiom a is strict epi and hence epi, thus f = g. So
since faithful functors reflect monomorphisms, ϵ is a strict epi. So since it is also a mono, ϵ is an
iso, finishing the proof. □

Remark 2. The representable case encompasses two classical examples of a Galois correspondence.
The category ExtopK/F along with K satisfies the three given axioms.

Also, if X is a path-connected, locally path-connected, and semi-locally simply-connected topo-
logical space. Then the category of connected coverings of X along with the universal cover X̃
satisfies the three axioms above.

The most general statement we will encounter today is a characterization of a Galois category as
the category of (not necessarily transitive) actions of a profinite group G on FinSet (the category
of finite sets): Grothendieck’s Galois theory. Before we sketch the proof of this we recall some
properties of profinite groups.
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2. Profinite group actions

Definition 5. A profinite group is an object in Pro(FinGrp), i.e. a strict projective system
(Gi)i∈I of finite groups. Equivalently it is the group lim

←−−i∈I Gi ⊆ ΠiGi endowed with the subspace
topology where the Gi are taken to be discrete.

Remark 3. Profinite groups can be characterized as those topological groups which are compact,
Hausdorff, and totally disconnected, i.e. group objects in the category of Stone spaces. See Theorem
2.1.3 in [RZ10].

Definition 6. A profinite group G is said to act on S ∈ Set endowed with the discrete topology
if there exists a continuous map G× S → S.

Proposition 1. Let G ∈ Pro(FinGrp) and S ∈ Set. A transitive action a : G × S → S is
continuous if and only if there exists an i ∈ I such that it factors as:

G× S S

Gi × S

a

πi×idS

Proof. We follow the proof of Proposition 3.16 in [DV00]. Let x ∈ E and H = Fix(x). Since
Fix(x) = a−1(x) ∩ (G× {x}), H is open. Recall that the subgroups Ki = kerπi are a fundamental
system of open neighborhoods of e ∈ G (see Lemma 2.1.1 [RZ10]). So there exists an i such that
Ki ≤ H.

Now let y ∈ E be arbitrary. Since the action is transitive, there exists a g ∈ G such that g ·x = y.
Therefore, since Ki is a normal subgroup,

Ki = gKig
−1 ⊆ g Fix(x)g−1 = Fix(y).

Therefore the group action factors through Gi × S. The converse follows since Gi × S is finite. □

Remark 4. As transitive actions only have a single orbit, it follows from the above proposition
that profinite groups can only act transitively if the set acted upon is finite.

Using the previous proposition and the fact Cat has all filtered colimits, G − Settrans can be
expressed as a filtered colimit of Gi − Settrans.

Proposition 2. Let G be a profinite group with surjective inverse system (Gi)i∈I . Then:

(1) For any i ∈ I there is a fully faithful embedding of categories:

Gi − Settrans ↪→ G− Settrans

(2) G− Settrans = colim
−−−−−→i∈I Gi − Settrans.

Proof. The statements are Proposition 3.17 (2) and (3) in [DV00]. Any transitive Gi-Set is a
transitive G-Set via the projections πi : G ↠ Gi (see Proposition 3.17 (1) [DV00]). The second
statement follows from the previous proposition. □

Proposition 3. G-Set is the free finite coproduct completion of G-Settrans
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3. Galois categories

Definition 7 (Galois category). An essentially small category C along with a functor F : C →
FinSet is a Galois category with fibre functor F if:

Axioms on C:
C1 C has finite (co)limits.

C2 Any morphism f : X → Y in C factors as an effective epi followed by a mono, X
e
↠ I

m
↪−→ Y

where I is a direct summand of Y .
Axioms on F :

F1 F preserves finite (co)limits.
F2 F reflects isomorphisms.

Note that by axioms F1 and F2, X = ∅ if and only if F (X) = ∅. This will be used several
times later on.

Remark 5. In Galois theory for schemes Lenstra uses epimorphisms instead of strict epimorphisms
in his definition of a Galois category.

Remark 6. In many sources, the existence of finite colimits in C and F preserving finite colimits
are replaced by two slightly weaker axioms (the analogous statements but for the terminal object,
finite coproducts and quotients by finite groups), however, the two definitions are equivalent (see
Expose V, Remark 4.2 [GR04]).

Proposition 4. The diagram Elts(F ) is filtered.

Proof. End of page 21 [DV00]. □

Hence by the homework of the first week we see that for a locally small category C the functor
U ◦ F : C → Set can be expressed as a colimit of representables, U ◦ F ∼

=⇒ colim(A,a)∈(Elts(F ))op yA.

Where U : FinSet → Set is the forgetful functor. So we may write F as HomPro(C)(lim←−−Elts(F )A,−),

i.e. F is prorepresented by the cofiltered diagram of elements P := (A)(A,a)∈Elts(F ). By abuse of
notation we will denote F by [P,−].

Proposition 5. Hence F is prorepresented by an object P := (A)(A,a)∈Elts(F ) ∈ Pro(C). Moreover,
AutPro(C)(P ) is a profinite group.

Recall from last week that an object is connected if it cannot be expressed as a coproduct of two
non-empty sub-objects.

Theorem 4. Every object is X ∈ C is a finite coproduct of connected objects.

Proof. See Theorem 4.16 [DV00]. □

Using this we can prove that F factors through the category of Aut(P )op-Sets. We will give a
proof later.

Proposition 6. For any X ∈ C there is a continuous left action of Aut(P )op on [P,X]. Hence F
factors through a functor H : C → Aut(P )op − Set.

This allows us to state the main theorem of this lecture:
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Theorem 5 (Grothendieck’s Galois correspondence). Let C be a Galois category with fibre functor
F . Then F factors through a functor,

H : C → AutPro(C)(P )− Set

which is an equivalence.

4. The connected case

In this section we consider the case where C is a connected Galois category, i.e.:

Definition 8 (Connected Galois catogory). A Galois category C is connected if all its objects are
connected.

Proposition 7. If C is a connected Galois category, then the diagram Elts(F ) has finite meets.

Proof. See Proposition 4.12 [DV00]. □

We will reduce the connected case to the representable case by showing that C and G−Settrans

are cofiltered by the Galois objects. First we recall the definition of a Galois object.

Definition 9. An object A is Galois if and only if Aut(A)
a∗−→ [P,A] is a bijection for all a ∈ [P,A].

Remark 7. Since connected objects are nonempty and X ̸= ∅ =⇒ F (X) ̸= ∅, [P,A] ̸= ∅ in the
above definition.

We begin by expressing C as a filtered colimit.

Definition 10. Let A ∈ C be Galois. Define CA to be the full subcategory of C consisting of

those X ∈ C such that [A,X]
a∗−→ [P,X] is a bijection. (I.e. those objects for which the functor is

represented by A).

Proposition 8. A morphism of Galois objects A→ B induces an inclusion CA ↪→ CB .

Proof. Connected objects are nonempty, so F (A) ̸= ∅. Therefore, there is a triangle

P

A B

a x◦a

x

which induces an inclusion of categories by Proposition 3.9 [DV00] (this is not hard to see, in the
reference it is stated without proof). □

Proposition 9. The category CA along with A satisfy the conditions for the representable case,
i.e. the adjunction:

CA (Aut(A))op − Settrans.

[K,−]G

K/−

⊣

is an equivalence.

Proof. (1) It follows directly from axiom C2 that all morphisms are strict epis. Together with
F (X) ̸= ∅ for all X ∈ CA this implies the first axiom.

(2) We can verify that CA is closed under quotients of actions by finite groups (Proposition 3.11
[DV00]). Hence by F1, the second axiom holds.
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(3) [A,A] = Aut(A) (see Remark 3.3 [DV00]).
□

Theorem 6. The subdiagram ΛF ⊆ Elts(F ) of Galois objects gives the same colimit F . Moreover
C is the filtered colimit of CA under the diagram ΛF → Cat, (A, a) 7→ CA.

Proof. See Theorem 3.14 [DV00]. □

Theorem 7. If C is a Galois category with connected objects, then the functor F : C → FinSet
factors through an equivalence H : C → Aut(P )op − Settrans.

Proof. That F factors through H follows from Proposition 3.20 [DV00]. Now since the diagram:

CA G− Settrans

CB H − Settrans

[A,−]G

[B,−]H

commutes for all A,B Galois and equivalences are stable under filtered colimits (optional home-
work), H being the filtered colimit (by Theorem 6), we conclude that H is an equivalence. □

5. Proof of the main theorem

First we begin by showing how Proposition 6 follows from the connected case.

Proof of Proposition 6. First we reduce to the connected case. In this manner decompose X into
connected objects

∐
iXi. Since [P,−] commutes with coproducts, G× [P,X] = G×

∐
[P,Xi]. But

coproducts commute with products in the category of compact Hausdorff spaces so this becomes∐
G× [P,Xi]. So the Proposition follows from the connected case. □

Proof sketch of main theorem. Can define a homotopy inverse of H by decomposing every G-Set
into its orbits and sending those orbits through the homotopy inverse obtained in the connected
case (i.e. maps into the full subcategory Con(C) of which C may be the free finite coproduct
completion). □

6. Optional Homework

(1.) Let X be a connected topological space x ∈ X and FinCov/X be the category of finite
coverings over X.

i. Let G be a group. Show that the collection of normal subgroups of N ≤ G, denoted I, is a
cofiltered diagram under reverse inclusion. The profinite completion of G, Ĝ is defined to
be lim
←−−N∈I G/N . Show that G−Set is equivalent to Ĝ−Set (i.e. category of finite G-Sets

is equivalent to category of finite Ĝ-Sets).
ii. In the lecture we mentioned that FinCov/X along with a basepoint x ∈ X and fibre

functor Fx : FinCov/X → FinSet sending a finite covering f : Y → X to its fibre at

x f−1(x) is a Galois category. Hence it is equivalent to some π̂(X,x) − Set for some
profinite group π̂(X,x). If X is also path connected, locally path connected, and semi
locally simply connected (so that the monodromy correspondence holds) show that in fact

π̂(X,x) ∼= π̂(X,x).
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