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1. Introduction

1.1 (Motivation). — The classical Grothendieck construction defines, for every
small category I, a functor ∫

I
: Hom(Iop, Cat) → Cat

that sends a functor F : Iop → Cat, from Iop to the category of small categories
Cat, to the so-called Grothendieck construction

∫
I

F of F . Here Hom denotes the
cartesian internal Hom of Cat, whose morphisms are strict natural transformations.
But the functorialities of the Grothendieck construction are more general. First, if
F, G : Iop → Cat are two such functors and α : F ⇒ G is a oplax transformation
(that is, roughly speaking, a transformation where the naturality squares only com-
mute up to an oriented 2-cell), then one can still integrate α to obtain a functor∫

I
α :

∫
I

F →
∫

I
G. Second, the construction is also functorial in I. Combining these,

we get a functoriality

Iop uop
//

F

��

Jop

G

��

Cat

α 2: 7→
∫

I
F

∫
(u, α)

//
∫

J
G ,

where α is an oplax transformation.
The purpose of this paper is to study higher generalizations of these functorialities

in the setting of strict ω-categories. Our original motivation was to investigate the
homotopical properties of the Grothendieck construction for strict ω-categories, par-
ticularly the generalization of a theorem by Thomason [7], which will be addressed
in a separate paper [2].
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1.2 (ω-categorical comma construction). — Let ω-Cat denote the ω-category
of strict ω-categories (with the cartesian enrichment). If F : I◦ → ω-Cat is a strict
ω-functor, where I is a strict ω-category and I◦ is the dual obtained by reversing
the orientation of all the cells, then a Grothendieck construction

∫
I

F was defined by
Warren in his work on the model of strict ω-groupoids for dependent type theory [8].

However, Warren’s definition is unsatisfactory as it relies on explicit and
complicated formulas. We propose to define the Grothendieck construction of
F : I◦ → ω-Cat as the ω-category

∫
I

F endowed with a universal 2-square

(
∫

I
F )◦

{{ ##

D0

cD0 $$

γ +3 I◦

F{{

ω-Cat ,

where D0 denotes the terminal ω-category, cD0
the constant ω-functor of value D0,

and γ an oplax transformation. This type of universal 2-squares was already studied
by the first-named author and Maltsiniotis [3] and is a straightforward generalization
of the classical comma construction, usually denoted u ↓ v. More precisely, we have∫

I
F = (cD0

↓ F )◦ ,

where ↓ denotes the oplax comma construction. Although these definitions are ab-
stract, explicit formulas can be extracted, and we recover Warren’s formulas from this
abstract point of view.

We are thus led to consider the following more general case. Let A, B, C be three
strict ω-categories and u : A → C and v : B → C be two ω-functors. We can form the
(oplax) comma ω-category A ↓C B, which comes equipped with a universal 2-square:

A ↓C B

{{ $$
A

u
$$

γ +3 B

v
zz

C ,

where γ is a oplax transformation. Our goal is now to study the functorialies of
A ↓C B in v : B → C, with C fixed, and symetrically in u : A → C, for which the
functorialities of the Grothendieck construction are a particular case. The universal
property of the comma immediately gives a functoriality:

B //

v

��

B′

v′

��

C

3; 7→ A ↓C B // A ↓C B′ ,
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where the 2-cell represents an oplax transformation. Working a bit harder, one can
get a functoriality:

B
))
55

v

��

�� B′

v′

��

C

*2
@Hbn 7→ A ↓C B

**

44�� A ↓C B′ ,

where the 2-cells represent oplax transformations and the 3-cell represents an oplax
2-transformation (also known as a oplax modification). And now comes the question:
what is the general statement?

1.3 (Slices of Gray ω-categories). — The answer to this question uses the lan-
guage of Gray ω-categories, which the first-named author introduced with Maltsiniotis
in their work on the join construction and the slices [4]. Indeed, the diagrams above
involving 0-cells, 1-cells, 2-cells and 3-cells actually live in ω-ℂatoplax, in which 0-cells
are strict ω-categories, 1-cells are strict ω-functors, 2-cells are oplax transformations,
3-cells are oplax 2-transformations, and so on. But ω-ℂatoplax is not an ω-category,
not even weak! Indeed, if

A
&&

88 B
&&

88 Cα �� β ��

are two oplax transformations, then there are a priori two ways of composing them:
(t(β) ∗0 α) ∗1 (β ∗0 s(α)) and (β ∗0 t(α)) ∗1 (s(β) ∗0 α) ,

where s and t denote the source and the target. In general, these two oplax transfor-
mations are different! In other words, ω-ℂatoplax does not satisfy the exchange rule.
What is true is that there is a non-invertible canonical oplax 2-transformation:

(β ∗0 t(α)) ∗1 (s(β) ∗0 α) β◦α *4 (t(β) ∗0 α)) ∗1 (β ∗0 s(α)) ,

which can be pictured as:
A B C

A B C

∗1

β

α


β◦α

⇛


A B C

A B C

∗1

β

α


This means that ω-ℂatoplax is some kind of oplax ω-category. Formally, ω-ℂatoplax
is what we call a Gray ω-category, that is, a category enriched in ω-Cat endowed
with the oplax Gray tensor product. Morphisms of Gray ω-categories are called Gray
ω-functors.

It is now tempting to think that the correspondence:
A ↓C − : (B → C) 7→ A ↓C B

extends to a Gray ω-functor of target ω-ℂatoplax. But what would be the source
Gray ω-category? Or, in other words, in which Gray ω-category do the triangles
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and cones we drew earlier are 1-cells and 2-cells? Obviously, in some kind of slice
Gray ω-category ω-ℂatoplax/C of the Gray ω-category ω-ℂatoplax above the strict
ω-category C (which is an object of ω-ℂatoplax). More generally, we prove the follow-
ing, which formalizes the notion of slice of a Gray ω-category.

Proposition 1.4. — Let ℂ is a Gray ω-category and c is an object of ℂ. Then there
is a natural Gray ω-category ℂ/c of objects of ℂ over c. In the case that ℂ is a strict
ω-category (which we can consider as a Gray ω-category where the “interchange rule”
is an equality), we recover the usual notion of slice strict ω-category [4].

The existence of slices of Gray ω-categories was conjectured in [4, Conjecture C.24].

1.5 (Functoriality results). — Using slices of Gray ω-categories, we can finally
express the desired functoriality of the construction A ↓C B, actually both in A and
B simultaneously.

Theorem 1.6. — The oplax comma construction − ↓C − defines a Gray ω-functor

− ↓C − : ω-ℂatoplax/C × ω-ℂatoplax
to
/ C → ω-ℂatoplax .

The decoration “to” in the previous theorem is a particular duality of slices of
Gray ω-category. As it happens, dualities of (strict and Gray) ω-categories play an
important role in this paper, and we study them with great care.

We also studied restricted functorialities of the comma construction. The
ω-category ω-Cat of ω-categories can be seen as sub Gray ω-category:

ω-Cat ↪→ ω-ℂatoplax,

by considering every strict higher transformation as a particular case of higher oplax
transformations. We then proved the following result.

Proposition 1.7. — The oplax comma construction restricts to a (strict) ω-functor

− ↓C − : ω-Cat/C × ω-Cat
to
/ C → ω-Cat.

The non-trivial part of this proposition being that the target of this ω-functor
does indeed restrict to ω-Cat. Once these functoralities are proven, we can finally
study the functorialities of the Grothendieck construction. For that, notice that the
ω-category ω-Cat is an object of ω-ℂAToplax the (very large) Gray ω-category of large
ω-categories, ω-functors and lax (higher) transformations between them.

Corollary 1.8. — The Grothendieck construction defines a Gray ω-functor:∫
:

(
ω-ℂatoplax

to
/ ω-Cat

)to → ω-ℂatoplax

(F : I◦ → ω-Cat) 7→
∫

I

F,

where ω-ℂatoplax
to
/ ω-Cat is the full sub-Gray ω-category of ω-ℂAToplax

to
/ ω-Cat

spanned by those functors F : I◦ → ω-Cat, where I is a small ω-category.
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In particular, if we fix a (small) ω-category I, the above restricts to a Gray
ω-functor ∫

I

: Homoplax(I◦, ω-Cat) → ω-ℂatoplax ,

as well as a strict ω-functor∫
I

: Hom(I◦, ω-Cat) → ω-Cat,

where Hom is the cartesian internal Hom of ω-Cat.

1.9 (Cones and other shapes). — It seems important to bring the reader’s at-
tention to the fact that there is a tour de force behind the definition of slices Gray
ω-category ℂ/c. Intuitively, to define such Gray ω-categories, one must make sense
in an arbitrary Gray ω-category of pasting diagrams shaped like (higher) cones:

•

��
• ,

• //

��

•

��
•

4<

,

• ''
77

��

�� •

��

• , etc.,

*2
BJam

as well as defining compositions between those. For example, defining the whiskering
operation of a 2-cell with a 1-cell in slice Gray ω-categories amounts to define a “total
composite” of the following pasting diagram

• ''
77

��

�� •

��

// •

xx• .

*2
BJ`m

In the case of strict ω-categories, the “cone”-shaped pasting diagrams are considered
as degenerate cases of “cylinder” shaped pasting diagrams:

•

��
• ,

• //

��

•

��
• // • ,

;C

• &&
88

��

�� •

��

• &&
88�� • , etc.

JR
,4
�'

and the composition between cone-shaped diagrams is induced by the ones at the
level of cylinders. However, it seems that for Gray ω-categories, it is not possible to
define all the cylinder compositions that would be required to then deduce the ones
for cones as a particular case. For example, we let the reader convince themselves
that it is not possible to make sense of the total composite of the following pasting
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diagram in a Gray ω-category:

• &&
88

��

�� •

��

// •

��
• &&

88�� •

JR
,4
�'

// • .

1.10 (A generalization). — Let us end this introduction with a noticeable by-
product result that we obtained in this paper. As noted before, the Grothendieck
construction of an ω-functor F : I◦ → ω-Cat can be defined as (the dual of) a com-
ma-ω-category. In fact, this comma-ω-category is (the dual of) a relative slice, mean-
ing it is obtained by pulling back a slice ω-category as follows

(
∫

I
F )◦ D0\ω-Cat

I◦ ω-Cat.
F

⌟

The advantage of this description is that it can be adapted straightforwardly in the
context of Gray ω-categories, up to some subtleties on dualities. If ℂ be a (small)
Gray ω-category, then its “total dual” obtained by reversing the directions of all the
cells is not a Gray category but what we call a skew Gray ω-category. By that, we
mean a category enriched in ω-Cat, endowed with the oplax Gray tensor product, but
with the “type” of composition morphisms given by

Hom(X, Y ) ⊗ Hom(Y, Z) → Hom(X, Z)

(as opposed to Hom(Y, Z)⊗Hom(X, Y ) → Hom(X, Z), which is a very different notion
as the oplax Gray tensor product is not symetrical or even braided). As an example of
skew Gray ω-category we have ω-ℂatlax, whose 0-cells are strict ω-categories, 1-cells
are ω-functors and higher cells are higher lax transformations. Now, given a (small)
Gray ω-category ℂ and F : ℂ◦ → ω-ℂatlax a skew Gray ω-functor, we define the (dual
of the) Grothendieck construction

∫
ℂ F of F as the following pullback:

(
∫
ℂ F )◦ D0\ω-ℂatlax

ℂ◦ ω-ℂatlax .
F

⌟

Note that
∫
ℂ F is indeed a Gray ω-category (and not a skew Gray ω-category). As

already said, the dualities for strict and Gray ω-categories are subtle and we give
study them thoroughly in this paper.

We plan to work more extensively on this Grothendieck construction in the context
of Gray ω-categories in future work.
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2. Preliminaries on enriched categories

We start by some preliminaries on categories enriched in a monoidal category. Our
case of interest is the category of strict ω-categories endowed with the Gray tensor
product, which will be introduced in the next section. This tensor product is not
symmetric (nor even braided).

2.1. — Let V = (V, ⊗, I) be a monoidal category. Since we do not assume V to be
symmetric, we need to distinguish between the notion of a V-category (or a category
enriched in V) and that of a skew V-category.

A V-category A is given by
– a set of objects Ob(A),
– for every objects X and Y of A, an object of morphisms HomA(X, Y ) in V,
– for every objects X, Y and Z of A, a composition morphism

◦ : HomA(Y, Z) ⊗ HomA(X, Y ) → HomA(X, Z)

in V,
– for every object X of A, an identity morphism

1X : I → HomA(X, X) .

in V,
satisfying well-known axioms.

The notion of a skew V-category is obtained likewise but with composition mor-
phisms of type

◦ : HomA(X, Y ) ⊗ HomA(Y, Z) → HomA(X, Z) .

More formally, a skew V-category is a V-category, where V denotes the monoidal
category (V, ⊗, I), the monoidal product ⊗ being defined by X ⊗ Y := Y ⊗ X.

We denote by V-Cat the (large) 2-category whose objects are V-categories, whose
morphisms are V-functors and whose 2-morphisms are V-natural transformations.
The 2-category V-Cat is thus the 2-category of skew V-categories. Its morphisms are
called skew V-functors and its 2-morphisms skew V-natural transformations.

2.2. — Let V be a monoidal category. Given a V-category A, we define its transpose
to be the obvious skew V-category At with same set of objects as A and

HomAt(X, Y ) = HomA(Y, X) .

Similarly, the transpose of a skew V-category is the V-category obtained in the anal-
ogous way.

The correspondence which sends a V-category to its transpose canonically extends
to a 2-functor

(−)t : (V-Cat)co → V-Cat
A 7→ At ,

where the decoration “co” indicates that the orientation of the 2-cells of V-Cat are
reversed.
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2.3. — Let V be a monoidal category. Recall that if V admits limits indexed by a
certain category, then so does V-Cat. Let us spell this out in the particular case of
binary products. If A and B are two V-categories, the product V-category A × B can
be described in the following way:

– Ob(A × B) = Ob(A) × Ob(B),
– if X, X ′ are objects of A and Y, Y ′ are objects of B, then

HomA×B((X, Y ), (X ′, Y ′)) = HomA(X, X ′) × HomB(Y, Y ′) ,

– if X, X ′, X ′′ are objects of A and Y, Y ′, Y ′′ are objects of B, the composition
of A × B is given by(

HomA(X ′, X ′′) × HomB(Y ′, Y ′′)
)

⊗
(

HomA(X, X ′) × HomB(Y, Y ′)
)

(
HomA(X ′, X ′′) ⊗ HomA(X, X ′)

)
×

(
HomB(Y ′, Y ′′) ⊗ HomB(Y, Y ′)

)
HomA(X, X ′′) × HomB(Y, Y ′′) ,

(p1⊗p1,p2⊗p2)

◦×◦

where p1 and p2 denote the first and second projections of the cartesian product,
– if X is an object of A and Y is an object of B, the identity morphism of (X, Y )

is

I HomA(X, X) × HomB(Y, Y ) .(1X ,1Y )

2.4. — Recall that if F : V → V ′ is a lax monoidal functor between monoidal cate-
gories, then F induces a 2-functor

F∗ : V-Cat → V ′-Cat

sending a V-category A to a V-category F∗(A) with same set of objects as A and

HomF∗(A)(X, Y ) = F (HomA(X, Y )) .

We will call monoidal functor a lax monoidal functor whose structural natural
transformations are isomorphisms. We will say that a functor F : V → V ′ between
two monoidal categories is anti-monoidal if it is monoidal considered as a functor
F : V → V ′, with the notation of 2.1.

2.5. — We say that a monoidal category V is closed on the right if, for every ob-
ject Y of V, the functor − ⊗ Y admits a right adjoint, which will then be denoted
by Homr(Y, −). In this case, for X, Y and Z three objects of V, we have a natural
isomorphism

HomV(X ⊗ Y, Z) ≃ HomV(X, Homr(Y, Z)) .

If V is closed on the right, there is an obvious V-category, denoted by Vr, whose
objects are the same as those of V and whose Hom are given by Homr(X, Y ).
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Dually we say that V is closed on the left if, for every object X of V, the functor
X ⊗ − admits a right adjoint, which will be denoted by Homl(X, −). We then have
a natural isomorphism

HomV(X ⊗ Y, Z) ≃ HomV(Y, Homl(X, Z)) .

If V is closed on the left, there is an obvious skew V-category, denoted by Vl, whose
objects are the same as those of V and whose Hom are given by Homl(X, Y ).

We say that V is biclosed if it is closed both on the left and on the right. In this
case, we have a canonical isomorphism

Homl(X, Homr(Y, Z)) ≃ Homr(Y, Homl(Y, Z))

natural in X, Y and Z in V.

2.6. — Let V be a monoidal category closed on the right. Suppose that V admits
binary products. Then the binary product defines a V-functor

× : Vr × Vr → Vr .

This V-functor is given on objects by

(X, Y ) 7→ X × Y ,

and, if X, X ′, Y, Y ′ are four objects of V, on Hom by the morphism

Homr(X, X ′) × Homr(Y, Y ′) → Homr(X × Y, X ′ × Y ′)

obtained by adjunction from the composite(
Homr(X, X ′) × Homr(Y, Y ′)

)
⊗

(
X × Y

)
(

Homr(X, X ′) ⊗ X
)

×
(

Homr(Y, Y ′) ⊗ Y
)

X ′ × Y ′ ,

(p1⊗p1,p2⊗p2)

ev×ev

where p1, p2 denote the two projections of the binary product and ev the evaluation
morphism of the right internal Hom.

Similarly, if V is closed on the left, we have a canonical skew V-functor

× : Vl × Vl → Vl .

2.7. — Suppose now that V is a biclosed monoidal category and let A be a
V-category. A covariant presheaf over A is a V-functor

F : A → Vr .

We denote by Hom(A, Vr) the category of covariant presheaves over A and of
V-natural transformations between them.

A contravariant presheaf over A is a skew V-functor

F : At → Vl .

We denote by Hom(At, Vl) the category of contravariant presheaves over A and of
skew V-natural transformation between them.
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Example 2.8. — Let a be an object of a V-category A. Then HomA(a, −) is a
covariant presheaf over A, and HomA(−, a) is a contravariant presheaf over A.

As we shall now see, covariant and contravariant presheaves admit a useful descrip-
tion in terms of left and right modules.

2.9. — Let V be a biclosed monoidal category and let A be a V-category. A right
A-module consists of

– a family (Fa)a∈Ob(A) of objects of V,
– for every objects a and a′ of A, a morphism of V

ρa,a′ : Fa′ ⊗ HomA(a, a′) → Fa ,

such that
– for every objects a, a′ and a′′ of A, the diagram

Fa′′ ⊗ HomA(a′, a′′) ⊗ HomA(a, a′) Fa′′ ⊗ HomA(a, a′′)

F ′
a ⊗ HomA(a, a′) Fa

Fa′′ ⊗◦

ρa′,a′′ ⊗HomA(a,a′) ρa,a′′

ρa,a′

commutes,
– for every object a of A, the diagram

Fa ≃ Fa ⊗ I Fa ⊗ HomA(a, a)

Fa

FA⊗1a

=
ρa,a

commutes.
If F and F ′ are two right A-modules, a morphism of right A-modules u : F → F ′

consists of a family (ua : Fa → F ′
a)a∈Ob(A) of morphisms of V such that for every

objects a and a′ of A, the square

Fa′ ⊗ HomA(a, a′) Fa

F ′
a′ ⊗ HomA(a, a′) F ′

a

ρa,a′

ua′ ⊗HomA(a,a′) ua

ρ′
a,a′

commutes. Right A-modules and their morphisms form a category that we will denote
by ModA.

The notions of left A-module and of morphism of left A-modules are defined anal-
ogously but with an action morphism of type

λa,a′ : Fa ⊗ HomA(a, a′) → Fa′ .

We denote the category of left A-modules by AMod.
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Proposition 2.10. — Let V be a biclosed monoidal category and let A be a
V-category. We have isomorphisms of categories

AMod ∼→ Hom(A, Vr) ,
and

ModA
∼→ Hom(At, Vl) .

Proof. — This follows from the adjunctions between the tensor product and Homr
and Homl. We leave the details to the reader.

Remark 2.11. — In practice, in this paper, we will produce contravariant pre-
sheaves and then use the previous proposition to obtain right modules and do com-
putations using the laws of right modules.

As we shall see in the next section, one specific property of the Gray tensor product
is that its monoidal unit is the terminal object. We now develop some enriched
category theory with this additional hypothesis.

2.12. — A monoidal category (V, ⊗, I) is said to be with projections if V admits
finite products and the tensor unit of V is a terminal object. In this case, if X and Y
are two objects of V, we get “projections”

X X ⊗ I X ⊗ Y I ⊗ Y Y ,∼ X⊗pX pY ⊗Y ∼

where pZ : Z → I denotes the unique morphism to the terminal object. In particular,
we get a morphism

π = (π1, π2) : X ⊗ Y → X × Y ,
natural in X and Y in V.

The cartesian product defines a monoidal structure on V and we will denote by V×

the resulting monoidal category. By default, V will be endowed with the monoidal
product ⊗ but sometimes, to emphasize this, we will denote this monoidal category
by V⊗.

With this notation, the morphism π shows that the identify functor of V is a
monoidal functor from V× to V⊗. It is also monoidal considered with values in V⊗.
In particular, we get 2-functors

V×-Cat → V⊗-Cat and V×-Cat → V⊗-Cat .
If the morphism π : X ⊗ Y → X × Y is an epimorphism for every objects X and Y

of V, we will say that V has jointly surjective projections. In this case, the two
2-functors above are injective on objects and fully faithful.

Suppose moreover that V is a cartesian closed and that V⊗ is monoidal biclosed.
We will denote by Vcart the V×-category of objects of V. In particular, if X and Y
are two objects of V, then HomVcart

(X, Y ) = HomV(X, Y ), where HomV denotes the
cartesian internal Hom of V. Based on the above, Vcart can also be considered as either
a V⊗-category or a V⊗-category. By the Yoneda lemma, using the morphism π, we
get canonical morphisms

HomV(X, Y ) → Homr(X, Y ) and HomV(X, Y ) → Homl(X, Y ) .
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These morphisms are monomorphisms if V has jointly surjective projections. In any
case, they induce a V⊗-functor and a V⊗-functor

Vcart → Vr and Vcart → Vl .

2.13. — Let V be a monoidal category with projections. If X, Y and Z are three
objects of V, we have a canonical natural morphism

φ : X ⊗ (Y × Z) → (X ⊗ Y ) × Z ,

given on components by

X ⊗ (Y × Z) X⊗p1−−−−→ X ⊗ Y and X ⊗ (Y × Z) π2−→ Y × Z
p2−→ Z ,

where p1 and p2 denote the projections of the cartesian product, and π1 and π2 the
“projections” of the tensor product. We will not need this fact but one can show that
φ is a tensorial strength on the functor − × Z.

Suppose moreover that V is cartesian closed and monoidal biclosed. Then the
morphism φ induces a natural morphism

λ : Homl(X, Hom(Y, Z)) → Hom(Y, Homl(X, Z))

that makes the following square commutative

Homl(X, Hom(Y, Z)) Hom(Y, Homl(X, Z))

Homl(X, Homr(Y, Z)) Homr(Y, Homl(X, Z)) ,

λ

∼

where the vertical arrows are induced by the canonical morphism from Hom to Homr.
Explicitly, the morphism λ is obtained by adjunction from

X ⊗
(

Homl(X, Hom(Y, Z)) × Y
)

(
X ⊗ Homl(X, Hom(Y, Z))

)
× Y Hom(Y, Z) × Y Z ,

φ

ev×Y ev

where ev denotes the two evaluation morphisms. It follows from the commutative
square above that if V has jointly surjective projections, then λ is a monomorphism.

Remark 2.14. — The previous paragraph can be dualized to Homr. In particular,
there is a canonical natural morphism

Homr(X, Hom(Y, Z)) → Hom(Y, Homr(X, Z)) .

3. Preliminaries on strict ω-categories

3.1. — For any n ⩾ 1, we denote by n-Cat the category of (small) strict n-categories,
that is, the category of categories enriched in (n − 1)-Cat with the cartesian monoidal
structure, the category 0-Cat being the category of sets. We will drop the adjective
“strict” and simply refer to “strict n-categories” as “n-categories”.
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We have a canonical inclusion
(n − 1)-Cat ↪→ n-Cat ,

which sends an (n − 1)-category to the n-category obtained by adding only trivial
n-cells. This inclusion admits a right adjoint τn−1 : n-Cat → (n − 1)-Cat, and the
category ω-Cat of ω-categories is obtained as the limit

· · · 2-Cat 1-Cat 0-Cat .τ1 τ0

For any n ≥ 0, we have a canonical fully faithful functor
n-Cat ↪→ ω-Cat ,

admitting both a left and a right adjoint, and whose image consists exactly of those
ω-categories with only trivial k-cells (that is, identities) for k > n. We shall always
identify this image with the category of n-categories, and consider the previous fully
faithful functor as an inclusion.

Let us introduce some notation. Let C be an ω-category. For an n-cell x and
0 ≤ k < n, we denote respectively by

sk(x) and tk(x)
the k-dimensional source and target of x. In the case where k = n − 1, we also write
s(x) and t(x). For k > n, we denote by

1k
x

the k-dimensional unit on x. When k = n + 1, we also write 1x. Given two n-cells x
and y such that sk(x) = tk(x), with k < n, we denote by

x ∗k y

their k-composition. More generally, for n > k and m > k, x an n-cell, y an m-cell,
such that sk(x) = tk(y), then if n < m, we set

x ∗k y := 1m
x ∗k y ,

and if n > m, we set
x ∗k y := x ∗k 1n

y .
For any n ≥ 0, we define Dn to be the n-category freely generated by a unique one

n-cell. Explicitly, Dn has exactly one non-trivial n-cell en, and exactly two non-trivial
k-cells for 0 ≤ k < n given by sk(en) and tk(en).

D0 = •, D1 = • → •, D2 = • • , · · ·

3.2. — The category ω-Cat has several interesting monoidal structures. First, it is
cartesian closed and the associated internal Hom is denoted by

Hom(A, B) ,
for A and B two ω-categories. The n-cells of this ω-category are in bijection with the
ω-functors

Dn × A → B .
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In particular, the 0-cells are simply the ω-functors A → B. For n ≥ 1, the n-cells are
referred to as strict n-transformations. Explicitly, given two ω-functors u, v : A → B,
a strict n-transformation α, with 0-source u and 0-target v, is a family (αx) of n-cells
of B, indexed by the 0-cells x of A, such that

– s0(αx) = u(x) and t0(αx) = v(x),
– for every k-cell x of C, with k ≥ 1, we have

αt0(x) ∗0 u(x) = v(x) ∗0 αs0(x) .

The category ω-Cat is enriched over itself via the cartesian product, and we have
a “fixed point” property: the category of categories enriched in (ω-Cat, ×, D0) is
canonically isomorphic to ω-Cat itself. In particular, we have an ω-category

ω-Catcart ,

whose 0-cells are (small) ω-categories, whose 1-cells are ω-functors and whose n-cells,
with n > 1, are the strict (n − 1)-transformations.

3.3. — Another fundamental monoidal category structure on ω-Cat comes from the
so-called (oplax) Gray tensor product (see for example [4, Appendix A]), denoted
by ⊗. To give an intuition, the tensor product D1 ⊗ D1 is a square with a non-trivial
2-cell

• •

• • ,
whereas the cartesian product D1 × D1 is a commutative square. The unit is the
terminal ω-category D0 (as for the cartesian structure) and the Gray tensor product
thus defines a monoidal structure with projections in the sense of 2.12. This monoidal
structure is not symmetrical (and not even braided). For example, we have

D1 ⊗ D2 =
• •

• •

⇛
• •

• •

and

D2 ⊗ D1 =
• •

• •

⇛
• •

• • .

3.4. — Let A and B be two categories. If x is an i-cell of A and y a j-cell of B, then
there is an associated (i + j)-cell x ⊗ y in A ⊗ B. Explicitly, this cell corresponds to
the ω-functor

Di+j Di ⊗ Dj A ⊗ B ,c̃ x̃⊗ỹ

where c denotes the principal cell of Di ⊗Dj , that is, its unique non-trivial (i+ j)-cell
(see for instance [3, paragraph B.1.5]) and z̃ denotes the ω-functor Dk → C associated
to a k-cell z of an ω-category C.
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We will not need this fact in this paper but one can show that cells of the form
x ⊗ y generate A ⊗ B under composition.

3.5. — The Gray tensor product is biclosed, with internal Hom denoted by Homoplax
and Homlax, respectively, so that we have

Hom(A ⊗ B, C) ≃ Hom(A, Homoplax(B, C))
≃ Hom(B, Homlax(A, C)) ,

for A, B and C three ω-categories. Moreover, by the monoidal preliminaries, this last
bijection can be promoted to a natural isomorphism

Homlax(A, Homoplax(B, C)) ≃ Homoplax(B, Homlax(A, C)) .
The n-cells of Homoplax(A, B) (resp. Homlax(A, B)) are in bijection with the

ω-functors
Dn ⊗ A → B (resp. A ⊗ Dn → B) .

In particular, the 0-cells of both Homoplax(A, B) and Homlax(A, B) are simply the
ω-functors A → B. For n ≥ 1, an n-cell of Homoplax(A, B) (resp. Homlax(A, B)) is
called an oplax n-transformation (resp. lax n-transformation). For an explicit descrip-
tion of oplax 1-transformations (also simply referred to as oplax transformations), see
for example [4, paragraph 1.9].

3.6. — By definition, if u, v : A → B are two ω-functors, an oplax transformation α
from u to v corresponds to an ω-functor h : D1 ⊗A → B making the following diagram
commutative

D0 ⊗ A A

D1 ⊗ A A

D0 ⊗ A A ,

σ⊗A

≃
u

h

τ⊗A

≃
v

where σ, τ : D0 → D1 correspond to the source and the target of the non-trivial 1-cell
of D1. By adjunction, it also corresponds to an ω-functor k : A → Homlax(D1, B)
making the diagram

B Homlax(D0, B)

A Homlax(D1, B)

B Homlax(D0, B)

≃

k

u

v

Homlax(σ,A)

Homlax(τ,A)

≃
commutative. This leads us to set

ΓB = Homlax(D1, B) .
This ω-category is the ω-category of cylinders in B. A k-cell in this ω-category is called
a k-cylinder in B. In other words, a k-cylinder in B is an ω-functor D1 ⊗ Dk → B.
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If β : D1 ⊗ Dk → B is such a k-cylinder, the image of the principal cell of D1 ⊗ Dk

(see 3.4) in B will be called the principal cell of β. We will denote it by βk.
As a particular case of the compatibilities between Homlax and Homoplax (see 3.5),

we get that if A and B are two ω-categories, then we have a natural isomorphism

Γ Homoplax(A, B) ≃ Homoplax(A, ΓB) .

This isomorphism will play a major role in this work.

3.7. — If C is an ω-category, then the ω-category ΓC is naturally the object of
morphisms of a category internal to ω-Cat. Indeed, the functors

σ, τ : D0 → D1, κ : D1 → D0 and ∇ : D1 → D1 ⨿D0 D1 ,

corresponding respectively to 0 and 1 in D1, the unit of 0 in D0 and the total com-
position of D1 ⨿D0 D1, define a cocategory internal to categories, and hence internal
to ω-categories, and by applying the functor Homlax(−, C) which sends colimits to
limits, we get ω-functors

𝕤, 𝕥 : ΓC → C, 𝕜 : C → ΓC and ∗c : ΓC ×C ΓC → ΓC

defining a structure of category internal to ω-categories. If x is a cell of C, we will
often denote 𝕜(x) by 1x.

3.8. — Let C be an ω-category and let c and d be two objects of C. For every 1-cell
u : c′ → c, we have an ω-functor

Γ HomC(u, d) : Γ HomC(c, d) → Γ HomC(c′, d) .

If α is a cell in Γ HomC(c, d), we will denote its image by this ω-functor by α ∗r u.
Similarly, if v : d → d′ is a 1-cell of C, we have an ω-functor

Γ HomC(c, v) : Γ HomC(c, d) → Γ HomC(c, d′) ,

and if α is a cell in Γ HomC(c, d), its image will be denoted by v ∗l α.

Remark 3.9. — We will come back to these operations in terms of modules in 5.3
and Remark 5.7.

In [5, Section 4] (see also [6, Appendix A]), the authors describe the ω-category ΓC
in an inductive way. We now rephrase their description.

3.10. — Let C be an ω-category. The ω-category ΓC can be described (up to
isomorphism) as a category enriched in ω-categories in the following way:

– The objects of the ΓC are the 1-cells of C.
– If f : c → d and f ′ : c′ → d′ are two objects of ΓC, we have

HomΓC(f, f ′)
= HomC(c, c′) ×Hom

C
(c,d′) ΓHomC(c, d′) ×Hom

C
(c,d′) HomC(d, d′) ,
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where this iterated fiber product denotes the limit of the diagram

HomC(c, c′) ΓHomC(c, d′) HomC(d, d′)

HomC(c, d′) HomC(c, d′) .
f ′∗0− 𝕤 𝕥 −∗0f

Concretely, a k-cell in this Hom is a triple (u, α, v) in
HomC(c, c′)k × ΓHomC(c, d′)k × HomC(d, d′)k

such that
𝕤(α) = f ′ ∗0 u and 𝕥(α) = v ∗0 f . (∗)

This formula is an ω-categorification of the formula for a 1-cylinder, i.e., a
2-square:

c
u //

f

��

c′

f ′

��

d
v
// d′ .

α

{�

In other words, a (k + 1)-cylinder in C is given by its 0-source f : c → d and its
0-target f ′ : c′ → d′, a k-cell u in C of 0-source c and 0-target c′, a k-cell v in C
of 0-source d and 0-target d′, and a k-cylinder α in HomC(c, d′) satisfying the
relations (∗).

– If f, f ′, f ′′ are three objects of ΓC, the enriched composition
HomΓC(f ′, f ′′) × HomΓC(f, f ′) → HomΓC(f, f ′′)

is given by
((u′, α′, v′), (u, α, v)) 7→ (u′ ∗0 u, (v′ ∗l α) ∗c (α′ ∗r u), v′ ∗0 v) .

This formula is an ω-categorification of the formula for composing the diagram

c
u //

f

��

c′ u′
//

f ′

��

c′′

f ′′

��

d
v

// d′

α

{�

v′
// d′′ .

α′

z�

– If f : c → d is an object of ΓC, its unit is the 1-cylinder (1c,1f , 1d), correspond-
ing to the commutative square

c
1c //

f

��

c

f

��

d
1d

// d .

1f

{�
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3.11. — A Gray ω-category is a category enriched in (ω-Cat, ⊗, D0) and a skew Gray
ω-category a skew category enriched in (ω-Cat, ⊗, D0).

If ℂ is a Gray ω-category, its objects will also be called 0-cells of ℂ. If c and d are
two 0-cells of ℂ, the k-cells of the ω-category Homℂ(c, d) will be called (k + 1)-cells
of ℂ. By definition, if x is such a cell, the 0-source s0(x) of x is c and its 0-target t0(x)
is d. The composition of x ∗i y of two k-cells of Homℂ(c, d) will be denoted x ∗i+1 y if
the cells x and y are considered as (k + 1)-cells of ℂ.

If a, b and c are three 0-cells of ℂ, the enriched composition will be denoted by
∗0 : Homℂ(b, c) ⊗ Homℂ(a, b) → Homℂ(a, c) .

If x is a k-cell of 0-source b and 0-target c and y is an l-cell of 0-source a and 0-target b,
we will denote by x ∗0 y the cell obtained by applying the enriched composition to
the (k + l − 2)-cell x ⊗ y of Homℂ(b, c) ⊗ Homℂ(a, b). This cell is a (k + l − 2)-cell
of Homℂ(a, c). In other words, x ∗0 y is a (k + l − 1)-cell of ℂ. Its 0-source is a
and its 0-target c. Note that the enriched composition is uniquely determined by all
the x ∗0 y.

of ℂ is a k-cell. The composition x ∗y y of two 2-cells of ℂ is a 3-cell. In general,
the exchange rule in ℂ for the cells x and y do not hold on the nose but up to the
oriented 3-cell x ∗0 y:

(x ∗0 t(y)) ∗1 (s(x) ∗0 y) x∗0y *4 (t(x) ∗0 y) ∗1 (β ∗0 s(y))

(see [3, Proposition B.1.14]). We refer the reader to [3, Section B.1] for more details
on the elementary structure of Gray ω-categories.

Similar definitions and notation apply to skew Gray ω-categories.

3.12. — Enriched functors between Gray ω-categories will be called Gray ω-functors.
Similarly, enriched functors between skew Gray ω-categories will be called skew Gray
ω-functors. A Gray or skew Gray ω-functor is uniquely determined by its action
on cells. More precisely, morphisms between Gray or skew Gray ω-functor can be
described as functions on k-cells for every k ⩾ 0 that are compatible with sources,
targets, compositions ∗i and units.

Enriched natural transformations between Gray or skew Gray ω-functors will be
called strict transformations. Explicitly, if F, G : ℂ → ℂ′ are two Gray ω-functors (or
two skew Gray ω-functors), a strict transformation α : F ⇒ G consists of the data of
a 1-cell

αc : F (c) → G(c)
for every 0-cell c of ℂ, such that, for every k-cell x, with k ⩾ 1, one has

αt0(x) ∗0 F (x) = G(x) ∗0 αs0(x) .

3.13. — We will denote by
ω-ℂatoplax (resp. ω-ℂatlax)

the Gray ω-category (resp. the skew Gray ω-category) whose objects are ω-categories
and whose Hom are

Homoplax(A, B) (resp. Homlax(A, B)) ,
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where A and B are two ω-categories. By definition, the 0-cells of ω-ℂatoplax
(resp. of ω-ℂatlax) are ω-categories, its 1-cells are ω-functors, its 2-cells are oplax
(resp. lax) transformations and, for n > 2, its n-cells are oplax (resp. lax) (n−1)-trans-
formations.

3.14. — Since the monoidal unit of the Gray tensor product is the terminal
ω-category, by 2.12, for every ω-categories A and B, we get an ω-functor

π = (π1, π2) : A ⊗ B → A × B .

Proposition 3.15. — If A and B are two ω-categories, the ω-functor

π : A ⊗ B → A × B

is an epimorphism.

Proof. — The ω-category A × B is generated under composition by cells of the form
(x, b), where x is a cell of A and b a 0-cell of B, and of the form (a, y), where a is a
0-cell of A and y a cell of B. It thus suffices to show that these cells are in the image
of the ω-functor π. But if b is an object of B, considering the commutative diagram

A ⊗ D0 A ⊗ B

A × D0 A × B ,

A⊗b

π∼ π

A×b

we get that for every cell x of A, the cell (x, b) is in the image of π : A ⊗ B → A × B.
A similar argument shows that cells of the form (a, y) are in the image of π, thereby
proving the result.

Remark 3.16. — We will not need it but one can actually prove that the ω-functor π
of the proposition is surjective on cells. More generally, if x is a k-cell of A and y is
a l-cell of B, then we have π(x ⊗ y) = (1x, 1y), where 1x and 1y denote the iterated
units of x and y in dimension k + l.

3.17. — In the language of 2.12, the previous proposition states that the monoidal
category (ω-Cat, ⊗, D0) has jointly surjective projections. We can thus apply the
considerations of 2.12 and 2.13. Let us start by 2.12.

We get that the category of ω-categories embeds both in the category of Gray
ω-categories and in the category of skew Gray ω-categories. Moreover, we have canon-
ical monomorphisms

Hom(A, B) ↪→ Homoplax(A, B) and Hom(A, B) ↪→ Homlax(A, B) ,

which we will treat as inclusions.
We thus have canonical Gray and skew Gray ω-functors

ω-Catcart ↪→ ω-ℂatoplax and ω-Catcart ↪→ ω-ℂatlax .
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3.18. — Let us now apply 2.13 to (ω-Cat, ⊗, D0). If D, A, B are three ω-categories,
we have a canonical monomorphism

λ : Homlax(D, Hom(A, B)) ↪→ Hom(A, Homlax(D, B))
making the square

Homlax(D, Hom(A, B)) Hom(A, Homlax(D, B))

Homlax(D, Homoplax(A, B)) Homoplax(A, Homlax(D, B)) ,

λ

∼

commute. We will treat λ as an inclusion. We thus get a factorization
Homlax(D, Hom(A, B)) ↪→ Hom(A, Homlax(D, B)) ↪→ Homlax(D, Homoplax(A, B))

of the canonical inclusion. This applies in particular in the case where D = D1 in
which we get inclusions

Γ Hom(A, B) ↪→ Hom(A, ΓB) ↪→ Γ Homoplax(A, B) .

We end the section by some considerations on the dualities of ω-Cat.

3.19. — If S ⊂ ℕ∗ is a subset of the set of positive integers, then we will denote by
DS : ω-Cat → ω-Cat

the ω-functor sending an ω-category C to the ω-category obtained from C by revers-
ing the orientation of all the cells whose dimension belongs to S. It is immediate
that DS is an involutive endofunctor of ω-Cat. Actually, up to isomorphism, all the
autoequivalences of ω-Cat are of the form DS . We will sometimes refer to these
autoequivalences as dualities.

Several special cases play an important role in the theory of ω-Cat:
– If S = ℕ∗, then Dℕ∗ is denoted by D◦ and is called the total dual. We simply

write C◦ for the total dual of an ω-category C.
– If S = 2ℕ + 1 is the set of odd integers, then D2ℕ+1 is denoted by Dop and is

called the odd dual. We simply write Cop for the odd dual of an ω-category C.
– If S = 2ℕ∗ is the set of positive even integers, then D2ℕ∗ is denoted by Dco and

is called the even dual. We simply write Cco for the odd dual of an ω-category C.
– If S = {1}, then D{1} is denoted by Dt and is called the transpose. We simply

write Ct for the transpose of C. This coincide with the transpose of C in the
sense of 2.2 when C is considered as a category enriched over ω-Cat endowed
with the cartesian product.

By composing all these special dualities, we get a group of eight dualities. In partic-
ular, if C is an ω-category, we get seven other ω-categories

C◦, Cop, Cco, Ct, Cto = (C◦)t
, Ctop = (Cop)t

, Ccot = (Cco)t .

Note that this group of dualities is isomorphic to (ℤ/2ℤ)3, a natural basis (as a
ℤ/2ℤ-module) being given by Dop, Dco and Dt.

We are now going to recall the compatibilities of the dualities of ω-Cat with the
Gray tensor product.
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Proposition 3.20. — Let A and B be two ω-categories. There are canonical iso-
morphisms

(A ⊗ B)op ≃ Bop ⊗ Aop, (A ⊗ B)co ≃ Bco ⊗ Aco, (A ⊗ B)◦ ≃ A◦ ⊗ B◦ ,
natural in A and B. In other words, the functors

Dco, Dop : ω-Cat → ω-Cat
are anti-monoidal and the functor

D◦ : ω-Cat → ω-Cat
is monoidal, ω-Cat being endowed with the Gray tensor product.

Proof. — See for instance [4, Proposition A.22].

Remark 3.21. — Besides the trivial duality, Dop, Dco and D◦ are the only dualities
of ω-Cat that are either monoidal or anti-monoidal.

Remark 3.22. — It follows from the previous proposition that if A and B are two
ω-categories, then we have natural isomorphisms

Homoplax(A, B)op ≃ Homoplax(Aop, Bop) ,
Homoplax(A, B)co ≃ Homlax(Aco, Bco) ,
Homoplax(A, B)◦ ≃ Homoplax(A◦, B◦) .

3.23. — Let ℂ be a Gray ω-category. By the previous proposition, from ℂ, we can
get two skew Gray ω-categories (Dop)∗(ℂ) and (Dop)∗(ℂ), and a Gray ω-category
(D◦)∗(ℂ), obtained by applying these dualities Hom-wise. Note that in these new
Gray or skew Gray ω-categories, the 1-cells are never reversed and in some sense
there is a shift by 1 of the dimensions that are reversed. With this in mind, we set

ℂop =
(
(Dco)∗(ℂ)

)t
, ℂco = (Dop)∗(ℂ), ℂ◦ =

(
(D◦)∗(ℂ)

)t .
Then ℂop is a Gray ω-category, and ℂco and ℂ◦ are skew Gray ω-categories. We also
set

ℂtop = (ℂop)t
, ℂcot = (ℂco)t

, ℂto = (ℂ◦)t .
To sum up, from a Gray ω-category ℂ, we get three other Gray ω-categories

ℂop, ℂcot, ℂto

and four skew Gray ω-categories
ℂt, ℂtop, ℂco, ℂ◦ ,

and no other duality of ω-Cat produces a Gray or a skew Gray ω-category.

3.24. — Using the previous paragraph, one can interpret the dualities Dco, Dop
and D◦ of ω-categories as Gray ω-functors. More precisely, one can check using 3.22
that these dualities induce isomorphisms of Gray ω-categories

Dco : (ω-ℂatlax)top → ω-ℂatoplax ,
Dop : (ω-ℂatlax)co → ω-ℂatoplax ,
D◦ : (ω-ℂatoplax)to → ω-ℂatoplax .
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4. Comma ω-categories

4.1. — Consider a diagram

A C B
f g

in ω-Cat. The oplax comma ω-category A ↓C B, also denoted by f ↓ g, is the universal
ω-category endowed with 2-square

A ↓C B
p1

||

p2

""
A

f ""

γ +3 B

g
||

C

in ω-ℂatoplax, that is, where p1 and p2 are ω-functors and κ is an oplax transformation.
This means that if T is an ω-category endowed with a similar 2-square

T
a

��

b

  

A

f ��

λ +3 B

g��

C ,

then there exists a unique ω-functor ha,λ,b : T → A that factors the diagram in the
sense that

p1ha,λ,b = a, p2ha,λ,b = b and κ ∗0 ha,λ,b = λ .
By 3.6, and with its notation, it is immediate that the data of such a 2-square is
equivalent to the data of an ω-functor from T to the limit of

A ΓC B

C C .
f s t g

This shows that we have
A ↓C B = A ×C ΓC ×C B .

The canonical projections p1 and p2 are the obvious projections on A and B, and the
2-cell γ : fp1 ⇒ gp2 corresponds to the projection

γ : A ↓C B → ΓC .

Example 4.2. — The slice ω-categories are particular cases of comma ω-categories.
Indeed, if C is an ω-category and c is an object of C, then the comma construc-
tion c ↓ C of the diagram

D0 C Cc 1C

draft — 19/02/2025 — 11:34:57



Draft

LAX FUNCTORIALITIES OF THE COMMA CONSTRUCTION FOR ω-CATEGORIES 23

is canonically isomorphic to the slice ω-category c\C described in [4, Chapter 9]
(see [3, Proposition 7.1] for a proof). More generally if v : B → C is an ω-functor,
then we have

c\B = c ↓ v ,

where c\B is the relative slice defined by the pullback

c\B c\C

B C ,
U

v

⌟

with U denoting the forgetful ω-functor.
Similarly, we have

C/c = C ↓ c

and, more generally, if u : A → C is an ω-functor,

A/c = u ↓ c .

4.3. — The comma construction A ↓C B is functorial in A and B. Indeed, if

A

u

��

f

''

B
g

ww
v

��

C

A′ f ′

77

B′g′

ggα
@H

β

��

is a diagram in ω-ℂatoplax, then we get an ω-functor

(f, α) ↓ (β, g) : A ↓C B → A′ ↓C B′

by applying the universal property of A′ ↓C B′ to the 2-square obtained by composing
the diagram

A ↓C B
p1

ww

p2

''
A

u

��

f

''

B
g

ww
v

��

γ +3

C

A′ f ′

77

B′ .g′

ggα
@H

β

��

Therefore, the comma construction defines a functor from the obvious category
whose objects are the diagrams

A C B
f g
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and whose morphisms are diagrams

A

u

��

f

''

B
g

ww
v

��

C

A′ f ′

77

B′g′

ggα
@H

β

��

in ω-ℂatoplax to the category ω-Cat. Better, the first-named author and Maltsiniotis
proved that the comma construction can be promoted to a sesquifunctor (see [3,
Theorem B.2.6]).

The main goal of this paper is to express and prove the full functorialities of the
comma construction, with respect to the higher structure of the Gray ω-category
ω-ℂatoplax. To do so, one ingredient will be the ω-categorical universal property of
the comma construction that we will now describe.

4.4. — Let
A C B

f g

as before and consider the universal 2-square

A ↓C B
p1

||

p2

""
A

f ""

γ +3 B

g
||

C .
For every ω-category T , we have an induced canonical ω-functor

Homoplax(T, A ↓C B)

Homoplax(T, A) ×Homoplax(T,C) Homoplax(T, ΓC) ×Homoplax(T,C) Homoplax(T, B),

induced by the projections p1, γ and p2, which we can identify with an ω-functor
Homoplax(T, A ↓C B) −→ Homoplax(T, A) ↓

Homoplax(T,C)
Homoplax(T, B)

using the canonical isomorphism Homoplax(T, ΓC) ≃ Γ Homoplax(T, C) of 3.6. Since
the functor Homoplax(T, −) : ω-Cat → ω-Cat is a right adjoint, it commutes with fibred
products and we get the following proposition:

Proposition 4.5 (Higher universal property of the comma construction)
If A C B

f g is a diagram in ω-Cat, then for any ω-category T the canonical
morphism

Homoplax(T, A ↓C B) ∼−→ Homoplax(T, A) ↓
Homoplax(T,C)

Homoplax(T, B) ,

draft — 19/02/2025 — 11:34:57



Draft

LAX FUNCTORIALITIES OF THE COMMA CONSTRUCTION FOR ω-CATEGORIES 25

is an isomorphism.

The enriched description of the ω-category of cylinders (see 3.10) leads to a anal-
ogous description for the comma ω-category:

4.6. — If A C B
f g is a diagram in ω-Cat, then the ω-category A ↓C B can be

described (up to isomorphism) as a category enriched in ω-categories in the following
way:

– The objects of A ↓C B are triples (a, l : fa → gb, b), where a is an object of A,
b an object of B and l a 1-cell of C.

– If (a, l : fa → gb, b) and (a′, l′ : fa′ → gb′, b′) are two objects of A ↓C B, then
HomA↓CB((a, l, b), (a′, l′, b′))

= HomA(a, a′) ×Hom
C

(fa,gb′) ΓHomC(fa, gb′) ×Hom
C

(fa,gb′) HomB(b, b′) ,
where this iterated fiber product denotes the limit of the diagram

HomA(a, a′) ΓHomC(fa, gb′) HomB(b, b′)

HomC(fa, gb′) HomC(fa, gb′) .
l′∗0f(−) 𝕤 𝕥 g(−)∗0l

This ω-category is actually itself a comma ω-category, namely
HomA(a, a′) ↓Hom

C
(fa,gb′) HomB(b, b′) .

Concretely, a k-cell in this Hom is a triple (u, α, v) in
HomA(a, a′)k × ΓHomC(fa, gb′)k × HomB(b, b′)k

such that
𝕤(α) = l′ ∗0 f(u) and 𝕥(α) = g(v) ∗0 l .

– If (a, l, b), (a′, l′, b′), (a′′, l′′, b′′) are three objects of A ↓C B, the enriched com-
position

HomΓC((a′, l′, b′), (a′′, l′′, b′′)) × HomΓC((a, l, b), (a′, l′, b′))

HomΓC((a, l, b), (a′′, l′′, b′′))

is given by
((u′, α′, v′), (u, α, v)) 7→ (u′ ∗0 u, (g(v′) ∗l α) ∗c (α′ ∗r f(u)), v′ ∗0 v) .

– If (a, l, b) is an object of A ↓C B, its unit is the triple (1a,1f , 1b).

4.7. — The comma construction we studied in this section is the oplax comma
construction. Similarly, one can define a lax comma construction by replacing the
oplax transformation in the 2-square of the universal property of the oplax comma
construction by a lax transformation. If

A C B
f g
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is a diagram in ω-Cat, we will denote by u ↓′ v, or A ↓′
C B, the lax comma construction

of u and v. Explicitly, we have

A ↓′
C B = A ×C Γ′C ×C B ,

where Γ′(C) = Homoplax(D1, C).
The lax comma construction can also be defined by duality from the oplax version.

Indeed, there are natural isomorphisms

(A ↓C B)op ≃ Bop ↓Cop Aop and (A ↓′
C B)co ≃ Aco ↓′

Cco Bco .

In particular, there is a natural isomorphism

(A ↓C B)◦ ≃ B◦ ↓C◦ A◦ and (A ↓′
C B)◦ ≃ B◦ ↓′

C◦ A◦ .

In this text, we will mainly deal with with the oplax version of the comma con-
struction construction and therefore drop the adjective “oplax”.

5. Slices of Gray ω-categories

The purpose of this section is to define, for ℂ a Gray ω-category and c an object
of ℂ, a slice Gray ω-category ℂ/c.

The description of the comma construction of 4.6 gives in particular an enriched
description for the slices of ω-categories. We will see that this description still makes
sense for Gray ω-categories. The definition will involve the ω-category

Γ(Homℂ(d, c)) = Homlax(D1, Homℂ(d, c)) ,

where d is another object of ℂ, and we start the section by an analysis of the structure
of this ω-category.

5.1. — The mapping
C 7→ ΓC = Homlax(D1, C)

is the object part of a skew Gray ω-functor

Γ = Homlax(D1, −) : ω-ℂatlax → ω-ℂatlax .

5.2. — Let ℂ be a Gray ω-category. For every object c of ℂ, by composing the two
skew Gray ω-functors

ℂt Homℂ(−,c)
−−−−−−−→ ω-ℂatlax

Γ−−−−→ ω-ℂatlax ,

we get a skew Gray ω-functor

Γ(Homℂ(−, c)) : ℂt → ω-ℂatlax .

By Proposition 2.10, this means that Γ(Homℂ(−, c)) is a right ℂ-module in the sense
of 2.9.
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5.3. — Let ℂ be a Gray ω-category and let a, b and c be three objects of ℂ. The
structure of right ℂ-module of the previous paragraph defines an ω-functor

∗r : ΓHomℂ(b, c) ⊗ Homℂ(a, b) → ΓHomℂ(a, c) .

Moreover, the axioms of modules give that, if a, b, c and d are four objects of ℂ, then
the diagrams

ΓHomℂ(c, d) ⊗ Homℂ(b, c) ⊗ Homℂ(a, b)
ΓHomℂ(c,d)⊗∗0

//

∗r⊗Homℂ(a,b)
��

ΓHomℂ(c, d) ⊗ Homℂ(a, c)

∗r

��

ΓHomℂ(b, d) ⊗ Homℂ(a, b) ∗r

// ΓHomℂ(a, d)

and

Γ Homℂ(a, b)
Γ Homℂ(a,b)⊗1a

//

=
++

Γ Homℂ(a, b) ⊗ Homℂ(a, a)

∗r

��

Γ Homℂ(a, b)
commute.

5.4. — We saw in 3.7 that, if C is an ω-category, then we have ω-functors

𝕤, 𝕥 : ΓC → C, 𝕜 : C → ΓC and ∗c : ΓC ×C ΓC → ΓC

defining a structure of category internal to ω-categories. All the operations of this
structure are natural in C. This means that this structure of internal category to ω-Cat
extends to a structure of internal category to the category of skew Gray ω-functors
from ω-ℂatlax to itself and strict transformations between them. More precisely, the
skew Gray ω-functor Γ: ω-ℂatlax → ω-ℂatlax is the object of morphisms of a category
internal to the category of skew Gray ω-functors from ω-ℂatlax to itself, the object of
objects being the identity functor.

5.5. — Let ℂ be a Gray ω-category and let c be an object of ℂ. By precomposing
by the skew Gray ω-functor

Homℂ(−, c) : ℂt → ω-ℂatlax

the internal category of the previous paragraph, we get that

Γ(Homℂ(−, c)) : ℂt → ω-ℂatlax

is the object of morphisms of a category internal to the category of skew Gray
ω-functors from ℂt to ω-ℂatlax, with object of objects Homℂ(−, c) and structure
maps

𝕤, 𝕥 : ΓHomℂ(−, c) ⇒ Homℂ(−, c), 𝕜 : Homℂ(−, c) ⇒ ΓHomℂ(−, c)

and
∗c : ΓHomℂ(−, c) ×Homℂ(−,c) ΓHomℂ(−, c) ⇒ ΓHomℂ(−, c) .
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By Proposition 2.10, this means that Γ(Homℂ(−, c)) is the object of morphisms of
a category internal to the category of right ℂ-modules and the four above structure
maps correspond to morphisms of right ℂ-modules.

5.6. — Let ℂ be a Gray ω-category and let a, b, c three objects of ℂ. The fact that
the structure maps 𝕤, 𝕥, 𝕜 and ∗c of the previous paragraph correspond to morphisms
of right ℂ-modules precisely means that the squares

ΓHomℂ(b, c) ⊗ Homℂ(a, b)

𝕖⊗Homℂ(a,b)
��

∗r // ΓHomℂ(a, c)

𝕖
��

Homℂ(b, c) ⊗ Homℂ(a, b) ∗0
// Homℂ(a, c) ,

for 𝕖 being 𝕤 or 𝕥,

ΓHomℂ(b, c) ⊗ Homℂ(a, b) ∗r // ΓHomℂ(a, c)

Homℂ(b, c) ⊗ Homℂ(a, b)

𝕜⊗Homℂ(a,b)

OO

∗0
// Homℂ(a, c)

𝕜

OO

and(
Γ Homℂ(b, c) ×Homℂ(b,c) Γ Homℂ(b, c)

)
⊗ Homℂ(a, b)

∗c⊗1
//

��

Γ Homℂ(b, c) ⊗ Homℂ(a, b)

∗r

��

Γ Homℂ(a, c) ×Homℂ(a,c) Γ Homℂ(a, c) ∗c

// Γ Homℂ(a, c) ,

where the left vertical arrow is the composite(
Γ Homℂ(b, c) ×Homℂ(b,c) Γ Homℂ(b, c)

)
⊗ Homℂ(a, b)

can

��(
Γ Homℂ(b, c) ⊗ Homℂ(a, b)

)
×Homℂ(b,c)⊗Homℂ(a,b)

(
Γ Homℂ(b, c) ⊗ Homℂ(a, b)

)
∗r×∗0 ∗r

��

Γ Homℂ(a, c) ×Homℂ(a,c) Γ Homℂ(a, c) ,

commute.

Remark 5.7. — Note that if a, b and c are three objects of a Gray ω-category ℂ,
there is no natural ω-functor

Homℂ(b, c) ⊗ ΓHomℂ(a, b) → ΓHomℂ(a, c) ,
and in particular, there is no natural structure of left ℂ-module on ΓHomℂ(a, −).
What is true is that Γ′Homℂ(a, −), where Γ′(C) = Homoplax(D1, C), is naturally a
left ℂ-module

We can now give the definition of the slice Gray ω-categories.
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5.8. — Let ℂ be a Gray ω-category and let c be an object ℂ. We define the slice
Gray ω-category ℂ/c in the following way:

– The objects of ℂ/c are pairs (d, f : d → c), where d is an object of ℂ and f a
1-cell.

– If (d, f : d → c) and (d′, f ′ : d′ → c) are two objects of ℂ, we set
Homℂ/c

((d, f), (d′, f ′)) = Homℂ(d, d′) ×Homℂ(d,c) ΓHomℂ(d, c) ×Homℂ(d,c) {f}

= Homℂ(d, d′) ↓Homℂ(d,c) {f} .

By definition, a k-cell in this Hom consists of a pair (u, α), with u is a k-cell
of Homℂ(d, d′) and α a k-cell of ΓHomℂ(d, c) such that

𝕤(α) = f ′ ∗0 u and 𝕥(α) = 1f .

In particular, an object of this Hom corresponds to a 2-triangle

d //

f
��

d′

f ′

��
c

s{

.
We will denote U and γ the projections

U : Homℂ/c
((d, f), (d′, f ′)) → Homℂ(d, d′)

γ : Homℂ/c
((d, f), (d′, f ′)) → ΓHomℂ(d, c)

so that
U(u, α) = u and γ(u, α) = α .

– If (d, f : d → c) is an object of ℂ/c, the associated unit

D0 → Homℂ/c
((d, f), (d, f))

is given by the pair

D0
1d−→ Homℂ(d, d) and D0

f−→ Homℂ(d, c) 𝕜−→ Γ(Homℂ(d, c)).

Concretely, it corresponds to the 2-triangle

d
1d //

f
��

d

f
��

c

1f

t|

.
In symbols, we have

1(d,f) = (1d,1f )
(remember that we denote k(f) by 1f ).

– Let (d, f), (d, f ′) and (d, f ′′) be three objects of ℂ/c. We now define the com-
position ω-functor

Homℂ/c
((d′, f ′), (d′′, f ′′)) ⊗ Homℂ/c

((d, f), (d′, f ′)) → Homℂ/c
((d, f), (d′′, f ′′)) .
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To define such an ω-functor we need to define two ω-functors
Homℂ/c

((d′, f ′), (d′′, f ′′)) ⊗ Homℂ/c
((d, f), (d′, f ′)) → Homℂ(d, d′′)

Homℂ/c
((d′, f ′), (d′′, f ′′)) ⊗ Homℂ/c

((d, f), (d′, f ′)) → Γ(Homℂ(d, c))

compatible with the pullback defining Homℂ/c
((d, f), (d′′, f ′′)). The first one is defined

by composing

Homℂ/c
((d′, f ′), (d′′, f ′′)) ⊗ Homℂ/c

((d, f), (d′, f ′))

U⊗U

��

Homℂ(d′, d′′) ⊗ Homℂ(d, d′) ∗0 // Homℂ(d, d′′) .

The second is defined by composing

Homℂ/c
((d′, f ′), (d′′, f ′′)) ⊗ Homℂ/c

((d, f), (d′, f ′))

��

Γ(Homℂ(d, c)) ×Homℂ(d,c) Γ(Homℂ(d, c)) ∗c // Γ(Homℂ(d, c)) ,

where the vertical morphism is induced by the following commutative hexagon

Homℂ/c
((d′, f ′), (d′′, f ′′)) ⊗ Homℂ/c

((d, f), (d′, f ′))
π2

uu

γ⊗U

**

Homℂ/c
((d, f), (d′, f ′))

γ

��

Γ(Homℂ(d′, c)) ⊗ Homℂ(d, d′)

∗r

��

Γ(Homℂ(d, c))

𝕤
))

Γ(Homℂ(d, c))

𝕥
tt

Homℂ(d, c) .

The fact that this indeed defines a composition ω-functor will be proven below. In
symbols, we have

(u′, α′) ∗0 (u, α) =
(
u′ ∗0 u, α ∗c (α′ ∗r u)

)
.

Note that this is an ω-categorification of the composition of triangles

d
u //

f

��

d′ u′
//

f ′

��

d′′

f ′′

~~
c

α
{�

α′

z�
7→

d
u′′

//

f
��

d′′

f ′′

��
c

α′′

s{

,

with
u′′ = u′u and α′′ = α ∗1 (α′ ∗0 u) .
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Theorem 5.9. — If ℂ is a Gray ω-category and c is an object ℂ, then ℂ/c as
described above is indeed a Gray ω-category.

Proof. — We start by proving that the composition of ℂ/c described in the previous
paragraph is well defined. We first have to prove that the hexagon announced to
be commutative is indeed commutative. Fix (u, α) a k-cell of Homℂ/c

((d, f), (d′, f ′))
and (u′, α′) a k-cell of Homℂ/c

((d′, f ′), (d′′, f ′′)). If we evaluate the left part of the
hexagon on (u′, α′) ⊗ (u, α), we get 𝕤(α). Evaluating the right part, we get 𝕥(α′ ∗r u).
But

𝕥(α′ ∗r u) = 𝕥(α′) ∗0 u = f ′ ∗0 u = 𝕤(α) ,
where the first equality follows from the fact that t is a morphism of right ℂ-modules
(see the first square of 5.6 for 𝕖 = 𝕥). A priori, we have shown that the hexagon
is commutative on “pure tensors” (u′, α′) ⊗ (u, α). Nevertheless, since each of the
equalities we are using comes from commutative diagrams, this algebraic proof can
be transformed into a diagrammatic proof showing that the hexagon is commutative,
without any restriction(1). From now on, we will freely use this technique to show
commutativity of diagrams starting from a tensor product.

To prove that the composition of ℂ/c is well defined, we now have to show the
commutativity of the diagram

Homℂ/c
((d′, f ′), (d′′, f ′′)) ⊗ Homℂ/c

((d, f), (d′, f ′))

Homℂ(d, d′′) Γ(Homℂ(d, c)) D0

Homℂ(d, c) Homℂ(d, c) .
f ′′∗0− 𝕤 𝕥 f

For the left square of the diagram, we have

𝕤(α ∗c (α′ ∗r u)) = 𝕤(α′ ∗r u) = 𝕤(α′) ∗0 u = (f ′′ ∗0 u′) ∗0 u = f ′′ ∗0 (u′ ∗0 u) ,

using first the internal category structure of the ω-category of cylinders (see 3.7), then
the fact that 𝕤 is a morphism of right ℂ-modules (see the first commutative square
of 5.6 for 𝕖 = 𝕤) and finally the associativity of the Gray ω-category ℂ. This proves
that the left square commutes. As for the right square, we have

𝕥(α ∗c (α′ ∗r u)) = 𝕥(α) = 1f ,

using again the internal category structure of the ω-category of cylinders (see 3.7).
This ends the proof that the composition of ℂ/c is well defined.

We now have to check the axioms of Gray ω-categories. Let us first prove the
associativity. Fix a k-cell (u′′, α′′) of Homℂ/c

((d′′, f ′′), (d′′′, f ′′′)). We have to prove

(1)A less elegant argument to conclude that the diagram is commutative is that the “pure tensors”
a ⊗ b in a Gray tensor product A ⊗ B form a generating set.
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that(
u′′, α′′) ∗0

(
(u′, α′) ∗0 (u, α)

)
=

(
u′′ ∗0 (u′ ∗0 u),

(
α ∗c (α′ ∗r u)

)
∗c

(
α′′ ∗r (u′ ∗0 u)

))
equals(

(u′′, α′′) ∗0 (u′, α′)
)

∗0
(
u, α

)
=

(
(u′′ ∗0 u′) ∗0 u, α ∗c

[(
α′ ∗c (α′′ ∗r u′)

)
∗r u

])
.

The equality of the first components follows from the associativity of the compo-
sition of ℂ. As for the second components, we have

α ∗c

[(
α′ ∗c (α′′ ∗r u′)

)
∗r u

]
= α ∗c

[(
α′ ∗r u

)
∗c

(
(α′′ ∗r u′) ∗r u

)]
= α ∗c

[(
α′ ∗r u

)
∗c

(
α′′ ∗r (u′ ∗0 u)

)]
=

(
α ∗c (α′ ∗r u)

)
∗c

(
α′′ ∗r (u′ ∗0 u)

)
,

where the first equality follows from the fact that ∗c is a morphism of right ℂ-modules
(see the last commutative square of 5.6), the second from the fact that ∗r is a right
action (see the commutative square of 5.3) and the last from the associativity of the
operation ∗c (see 3.7). This ends the proof that the composition of ℂ/c is associative.

Finally, we prove the axioms involving units. For the left unit axiom, we have
(u, α) ∗0 1(d,f) = (u, α) ∗0 (1d,1f ) = (u ∗0 1d,1f ∗c (α ∗r 1d)) = (u, α) ,

where the last equality uses the axiom of units in ℂ, the structure of category of 3.7
and the fact that ∗r is a right action (see the commutative triangle of 5.3). Finally,
for the right unit axiom, we have

1(d′,f ′) ∗0 (u, α) = (1d′ ,1f ′) ∗0 (u, α) = (1d′ ∗0 u, α ∗c (1f ′ ∗r u)) = (u, α) ,
where the last equality uses the axiom of units in ℂ, the fact that 1 is a morphism
of right ℂ-modules (see the second commutative square of 5.6) and the structure of
internal category of 3.7.

Remark 5.10. — The existence of slice Gray ω-categories was first conjectured by
the first-named author and Maltsiniotis [4, conjecture C.24].

5.11. — Let ℂ be a Gray ω-category et let c be an object of ℂ. We have a canonical
Gray ω-functor

U : ℂ/c → ℂ ,
called the forgetful Gray ω-functor. It is defined on objects by

(d, f) 7→ d ,
and, if (d, f), (d′, f ′) are two objects, on morphisms by the projection

U : Homℂ/c
((d, f), (d′, f ′)) → Homℂ(d, d′)

(see 5.8).

Proposition 5.12. — Let C be an ω-category and let c be an object of C. Then,
we have a canonical natural isomorphism

ι(C)/c ≃ ι(C/c)
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commuting to forgetful morphisms, where ι denotes the inclusion functor from
ω-categories to Gray ω-categories.

Proof. — This is true by design of slice Gray ω-categories, and more precisely, by
the description of the slice ω-categories that follows from the description of comma
ω-categories given in 4.6.

Proposition 5.13. — Let ℂ be a Gray ω-category and let c and d be two objects
of ℂ. Then the fiber of the forgetful Gray ω-functor ℂ/c → ℂ at d is canonically
isomorphic to Homℂ(d, c)◦.

Proof. — Denote by Ud this fiber. By definition, its objects are 1-cells d → c of ℂ,
and if f, f ′ are two such objects, we have

HomUd
(f, f ′) = {f ′} ×Homℂ(d,c) ΓHomℂ(d, c) ×Homℂ(d,c) {f} = {f ′} ↓Homℂ(d,c) {f} .

This means that a k-cell of this ω-category is a k-cylinder α in Homℂ(d, c) such that
𝕤(α) = 1f ′ and 𝕥(α) = 1f . Moreover, the enriched composition simplifies to

HomUd
(f ′, f ′′) ⊗ HomUd

(f, f ′) → HomUd
(f, f ′′)

(α′, α) 7→ α′ ∗c α

(as α′ ∗c (α ∗r 1d) = α′ ∗c α).
But in general, if a and a′ are two objects of an ω-category A, we have a canonical

isomorphism
{a} ↓A {a′} ∼−→ HomA(a, a′)◦

(see [1, Proposition B.6.2]), sending a k-cylinder α in A to its principal cell αk

(see 3.6). We thus have
HomUd

(f, f ′) ≃ HomHomℂ(d,c)(f ′, f)◦ = HomHomℂ(d,c)◦(f, f ′) ,

this isomorphism sending a k-cylinder α in Homℂ(c, d) to its principal cell αk+1. Now
if (α′, α) is in HomUd

(f ′, f ′′)k × HomUd
(f, f ′)k, then

(α′ ∗c α)k+1 = α′
k+1 ∗0 αk+1 .

This shows that the isomorphism
HomUd

(f, f ′) ≃ HomHomℂ(d,c)◦(f, f ′)

is compatible with compositions, thereby proving the result.

5.14. — Let C be a strict ω-category and let c be an object of C. If D is any duality
of ω-Cat, then by “conjugating” the slice construction C/c by D, one gets another
slice construction. If D does not reverse the 1-cells, we set

C
D
/ c = D

(
D(C)/c

)
.

In the case where D reverses the 1-cells, this notation would be misleading as
D

(
D(C)/c

)
is actually a slice below c (and not above c). In particular, if D is the

total dual, following the notation of [4], we set

c\C = (C◦
/c)◦ .
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Now if D is a general duality reversing the 1-cells, then denoting by D′ the unique
duality such that D′ ◦ D is the total dual (in particular, D′ does not reverse the
1-cells), one gets

D
(
D(C)/c

)
= D′

((
D′(C)◦

/c
)◦)

= D′(
c\D′(C)

)
.

Therefore, if D reverses the 1-cells, we set

c
D′

\C = D
(
D(C)/c

)
.

This means that we only decorate (over or under) slices by dualities that do not
reverse the 1-cells.

Let us now apply this to Gray ω-categories. If ℂ is a Gray ω-category and c is
an object of ℂ, we can conjugate our Gray slice construction by the three non-trivial
dualities of Gray ω-categories (see 3.23) and we set

ℂ
to
/ c = (ℂto

/c)to , c
co
\ℂ = (ℂop

/c)op , c
top

\ℂ = (ℂcot
/c)cot .

Note that each of these Gray ω-categories admits a forgetful Gray ω-functor to ℂ.
Similarly, if ℂ is a skew Gray ω-category and c is an object of ℂ, we set

c\ℂ = (ℂ◦
/c)◦ , c

to
\ℂ = (c\ℂto)to , ℂ

co
/ c = (c\ℂop)op , ℂ

top
/ c = (c\ℂcot)cot .

Each of these skew Gray ω-categories admits a forgetful skew Gray ω-functor to ℂ.

6. Lax functorialities of the comma construction

The purpose of this section is to extend the comma construction

A C B 7→ A ↓C B

to a Gray ω-functor

− ↓C − : ω-ℂatoplax/C × ω-ℂatoplax
to
/ C → ω-ℂatoplax .

6.1. — Let us fix ω-functors

A C B
f g and A′ C B′f ′ g′

.

To any 2-square
T

a

��

b

  

A

f ��

λ +3 B

g~~

C
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in ω-ℂatoplax, we are going to associate an ω-functor

K : Homω-ℂatoplax/C
((A, f), (A′, f ′)) × Hom

ω-ℂatoplax
to
/C

((B, g), (B′, g′))

Homoplax(T, A′) ↓
Homoplax(T,C)

Homoplax(T, B′) .

Recall that
Homω-ℂatoplax/C

((A, f), (A′, f ′))

= Homoplax(A, A′) ×Homoplax(A,C) Γ Homoplax(A, C) ×Homoplax(A,C) {f ′}

and
Hom

ω-ℂatoplax
to
/C

((B, g), (B′, g′))

= {g} ×Homoplax(B,C) Γ Homoplax(B, C) ×Homoplax(B,C) Homoplax(B, B′) ,

so that an i-cell in the product of these two ω-categories consists of a 4-uple

(u, α, β, v)

in

Homoplax(A, A′)i × (Γ Homoplax(A, C))i × (Γ Homoplax(B, C))i × Homoplax(B, B′)i

satisfying
𝕤(α) = f ′ ∗0 u, 𝕥(α) = f, 𝕤(β) = g, 𝕥(β) = g′ ∗0 v .

In particular, for i = 0, we get a diagram

A

u

��

f

''

B
g

ww
v

��

C

A′ f ′

77

B′ .g′

ggα
@H

β

��

Similarly, an i-cell

Homoplax(T, A′) ↓
Homoplax(T,C)

Homoplax(T, B′)

consists of a triple
(a′, δ, b′)

in
Homoplax(T, A′)i × (ΓHomoplax(T, C))i × Homoplax(T, B′)i

such that
s(δ) = f ′ ∗0 a′ and t(δ) = g′ ∗0 b′ .
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For i = 0, we get a 2-square
T

a′

~~

b′

  

A′

f ′   

δ +3 B′

g′~~

C .
The ω-functor K is defined by categorification of the formula defining the total

composite of the 2-diagram

T
a

ww

b

''
A

u

��

f

''

B
g

ww
v

��

λ +3

C

A′ f ′

77

B′ ,g′

ggα
@H

β

��

that is, by the formula

(u, α, β, v) 7→ (u ∗0 a, (β ∗r b) ∗c λ ∗c (α ∗r a), v ∗0 b) .

6.2. — In particular, if we apply the construction of the previous paragraph to the
universal 2-square

A ↓C B
p1

{{

p2

$$
A

f $$

γ +3 B

g
zz

C ,

we get an ω-functor

− ↓C − : Homω-ℂatoplax/C
((A, f), (A′, f ′)) × Hom

ω-ℂatoplax
to
/C

((B, g), (B′, g′))

Homoplax(A ↓C B, A′) ↓
Homoplax(A↓CB,C)

Homoplax(A ↓C B, B′)

Homoplax(A ↓C B, A′ ↓C B′) .

≃

It is given by the formula

(u, α, β, v) 7→ (u ∗0 p1, (β ∗r p2) ∗c γ ∗c (α ∗r p1), v ∗0 p2) .
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In particular, if g : B → C is an ω-functor, we have

(− ↓C B)(u, α) = (− ↓C −)(u, α, 1v,1B)
= (u ∗0 p1, (1v ∗r p2) ∗c γ ∗c (α ∗c p1),1B ∗0 p2)
= (u ∗0 p1, γ ∗c (α ∗r p1), p2) ,

and, similarly, if f : A → C is an ω-functor, we have

(A ↓C −)(β, v) = (p1, (β ∗r p2) ∗c γ, v ∗0 p2) .

Theorem 6.3. — Let C be an ω-category. The comma construction extends, via the
construction of the previous paragraph, to a Gray ω-functor

− ↓C − : ω-ℂatoplax/C × ω-ℂatoplax
to
/ C → ω-ℂatoplax .

Proof. — In this proof, to make our formula slightly more compact, we set

Homol := Homoplax, Hom
/C

:= Homω-ℂatoplax/C
and Homto

/C
:= Hom

ω-ℂatoplax
to
/C

.

For the same reason, if (T, T → C) is an ω-category over C, we will denote it simply
by T .

Let us now prove the proposition. We have to check the compatibility with the
unit and the compatibility with the composition. To do so, we will use the same
technique as in Theorem 5.9.

For the unit, we have

(− ↓C −)
(
1(A,f), 1(B,g)

)
= (− ↓C −)(1A, 1f , 1g,1B)
= (1A ∗0 p1, (1g ∗r p2) ∗0 γ ∗0 (1f ∗r p1),1B ∗0 p2)
= (p1, γ, p2)
= 1A↓CB .

Let us now check the compatibility with composition. Consider A, A′, A′′, B, B′, B′′

six ω-categories over C. We have to prove that the two canonical ω-functors(
Hom

/C
(A′, A′′) × Homto

/C
(B′, B′′)

)
⊗

(
Hom

/C
(A, A′) × Homto

/C
(B, B′)

)

Homol(A ↓C B, A′′ ↓C B′′) ,

which we will describe below, are equal. Consider

(u′, α′, β′, u) and (u, α, β, v)

cells of

Hom
/C

(A′, A′′) × Homto
/C

(B′, B′′) and Hom
/C

(A, A′) × Homto
/C

(B, B′)
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respectively. When these cells are 0-cells, we get a diagram

A

u

��

f

$$

B

g

zz

v

��

A′ f ′
//

u′

��

α 6>

C B′g′
oo

v′

��

β

 (

A′′
f ′′

::
α′ 6>

B′′ .
g′′

dd
β′

 (

Consider first the ω-functor M defined as the composite(
Hom

/C
(A′, A′′) × Homto

/C
(B′, B′′)

)
⊗

(
Hom

/C
(A, A′) × Homto

/C
(B, B′)

)
(

Hom
/C

(A′, A′′) ⊗ Hom
/C

(A, A′)
)

×
(

Homto
/C

(B′, B′′) ⊗ Hom
/C

(B, B′)
)

Hom
/C

(A, A′′) × Homto
/C

(B, B′′)

Homol(A ↓C B, A′′ ↓C B′′) .

can

∗0 ⊗ ∗0

−↓C−

We have
M

(
(u′, α′, β′, v′) ⊗ (u, α, β, v)

)
=

(
− ↓C −

)(
(u′, α′) ∗0 (u, α), (β′, v′) ∗0 (β, v)

)
=

(
− ↓C −

)(
u′ ∗0 u, α ∗c (α′ ∗r u), (β′ ∗r v) ∗c β, v′ ∗0 v

)
=

(
(u′ ∗0 u) ∗0 p1,[

(β′ ∗r v) ∗c β) ∗r p2
]

∗c γ ∗c

[
(α ∗c (α′ ∗r u) ∗r p1)

]
,

(v′ ∗0 v) ∗0 p2
)

.

Note that this final formula is a categorification of the total composite of the diagram

A ↓C B
p1

xx

p2

&&
A

u

��

f

&&

B

g

xx

v

��

γ +3

A′ f ′
//

u′

��

α 4<

C B′g′
oo

v′

��

β

"*

A′′
f ′′

88
α′ 4<

B′′ .
g′′

ff
β′

"*
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Consider now the ω-functor N obtained as the composite(
Hom

/C
(A′, A′′) × Hom to

/C

(B′, B′′)
)

⊗
(

Hom
/C

(A, A′) × Hom to
/C

(B, B′)
)

Homol(A
′ ↓C B′, A′′ ↓C B′′) ⊗ Homol(A ↓C B, A′ ↓C B′)

Homol(A ↓C B, A′′ ↓C B′′) .

(−↓C ,−)⊗(−↓C −)

◦

Let us compute N
(
(u′, α′, β′, v′) ⊗ (u, α, β, v)

)
. Denote by

A′ ↓C B′

p′
1

||

p′
2

""

A′

f
""

γ′
+3 B′

g′
||

C ,

A ↓C B

p1

}}

p2

!!
A

f
!!

γ +3 B

g
||

C

the two universal 2-squares involved. By definition, we have

(− ↓C −)(u′, α′, β′, v′) = (u′ ∗0 p′
1, (β′ ∗r p′

2) ∗c γ′ ∗c (α′ ∗r p′
1), v′ ∗0 p′

2) ,
(− ↓C −)(u, α, β, v) = (u ∗0 p1, (β ∗r p2) ∗c γ ∗c (α ∗r p1), v ∗0 p2) ,

and we have to compute the composition of these two cells in ω-ℂatoplax. We have(
u′ ∗0 p′

1, (β′ ∗r p′
2) ∗c γ′ ∗c (α′ ∗r p′

1), v′ ∗0 p′
2

)
∗0

(
u ∗0 p1, (β ∗r p2) ∗c γ ∗c (α ∗r p1), v ∗0 p2

)
=

(
u′ ∗0 (u ∗0 p1),[
β′ ∗r (v ∗0 p2)

]
∗c

[
(β ∗r p2) ∗c γ ∗c (α ∗r p1)

]
∗c

[
α′ ∗r (u ∗0 p1)

]
,

v′ ∗0 (v ∗0 p2)
)

.

The axiom we are checking is thus equivalent to the equalities

u′ ∗0 (u ∗0 p1) = (u′ ∗0 u) ∗0 p1 , v′ ∗0 (v ∗0 p2) = (v′ ∗0 v) ∗0 p2

and [
β′ ∗r (v ∗0 p2)

]
∗c

[
(β ∗r p2) ∗c γ ∗c (α ∗r p1)

]
∗c

[
α′ ∗r (u ∗0 p1)

]
=

[
(β′ ∗r v) ∗c β) ∗r p2

]
∗c γ ∗c

[
(α ∗c (α′ ∗r u)) ∗r p1

]
.
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The two first equalities are obviously true. As for the last one, we have[
β′ ∗r (v ∗0 p2)

]
∗c

[
(β ∗r p2) ∗c γ ∗c (α ∗r p1)

]
∗c

[
α′ ∗r (u ∗0 p1)

]
=

([
β′ ∗r (v ∗0 p2)

]
∗c

[
β ∗r p2

])
∗c γ ∗c

([
α ∗r p1

]
∗c

[
α′ ∗r (u ∗0 p1)

])
=

([
(β′ ∗r v) ∗r p2)

]
∗c

[
β ∗r p2

])
∗c γ ∗c

([
α ∗r p1

]
∗c

[
(α′ ∗r u) ∗r p1

])
=

[
(β′ ∗r v) ∗c β) ∗r p2

]
∗c γ ∗c

[
(α ∗c (α′ ∗r u)) ∗r p1

]
,

where the first equality follows from the associativity of ∗c, the second from the fact
that ∗r is a right module action (see 5.3) and the last one from the fact that this
action is compatible with ∗c (see the last square of 5.6).

Remark 6.4. — If A and B are two fixed ω-categories, there is a canonical embed-
ding

Homoplax(A, C)◦ × Homoplax(B, C)to ↪→ ω-ℂatoplax/C × ω-ℂatoplax
to
/ C .

Indeed, by Proposition 5.13, the ω-category Homoplax(A, C)◦ canonically embeds in
ω-ℂatoplax/C , and, by duality, this implies that(

Hom(
ω-ℂatoplax

)to(A, C)◦)to = Hom(
ω-ℂatoplax

)to(A, C)t = Homω-ℂatoplax
(A, C)to

embeds in ω-ℂatoplax
to
/ C .

The comma construction can thus be restricted to a Gray ω-functor
− ↓C − : Homoplax(A, C)◦ × Homoplax(B, C)to → ω-ℂatoplax .

Remark 6.5. — By duality, one can deduce that the lax comma construc-
tion − ↓′ − defines a skew Gray ω-functor. This follows from the formula
A ↓′

C B ≃
(
Aco ↓Cco Bco)co of 4.7. Indeed, by 3.23, the duality Dco defines an

isomorphism of skew Gray ω-categories Dco : (ω-ℂatoplax)top → ω-ℂatlax and we can
consider the chain of skew Gray ω-functors and skew Gray ω-functors(

(ω-ℂatoplax)top
/C

)top ×
(
(ω-ℂatoplax)top to

/ C
)top

(
ω-ℂatoplax/Cco

)top ×
(
ω-ℂatoplax

to
/ Cco

)top
(ω-ℂatoplax)top ω-ℂatlax .

Dco

−↓Cco − Dco

Composing this chain, we get a skew Gray ω-functor

− ↓′
C − : ω-ℂatlax

top
/ C × ω-ℂatlax

co
/ C → ω-ℂatlax .

Corollary 6.6. — If B → C is an ω-functor, then we have a Gray ω-functor
− ↓C B : ω-ℂatoplax/C → ω-ℂatoplax ,

and if A → C is an ω-functor, then we have a Gray ω-functor

A ↓C − : ω-ℂatoplax
to
/ C → ω-ℂatoplax .
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Remark 6.7. — The two Gray ω-functors of the previous corollary can be deduced
from one another using the formula A ↓C B ≃

(
B◦ ↓C◦ A◦)◦ of 4.7. For instance,

if u : A → C is an ω-functor, the Gray ω-functor A ↓C − can be identified to the
composition of the Gray ω-functors(

(ω-ℂatoplax)to
/C

)to (
ω-ℂatoplax/C◦

)to (ω-ℂatoplax)to ω-ℂatoplax .D◦ −↓C◦A◦
D◦

We end the section by expressing that the comma construction of A ↓C B is
above A and B with a natural transformation.

Proposition 6.8. — Let C be an ω-category. The canonical projection

p = (p1, p2) : A ↓C B → A × B

is natural in
A C B ,

in the sense that it defines a natural transformation (in an enriched sense) from the
Gray ω-functor

− ↓C − : ω-ℂatoplax/C × ω-ℂatoplax
to
/ C → ω-ℂatoplax

to the Gray ω-functor obtained by composing

ω-ℂatoplax/C × ω-ℂatoplax
to
/ C ω-ℂatoplax × ω-ℂatoplax ω-ℂatoplax ,U×U ×

where U denotes the forgetful Gray ω-functor (see 5.11) and × is the product Gray
ω-functor (see 2.6).

Proof. — Let A, A′, B and B′ four ω-categories above C. Using the same abbre-
viation as in the proof of Theorem 6.3, we have to show the commutativity of the
square

Hom
/C

(A, A′) × Homto
/C

(B, B′) Homol(A ↓C B, A′ ↓C B′)

Homol(A × B, A′ × B′) Homol(A ↓C B, A′ × B′) ,

−↓C−

× Homol(A↓CB,p′)

Homol(p,A′↓C B′)

where we denoted simply by × the target Gray ω-functor of the statement. So let
(u, α, β, v) be a cell in the source ω-category of this square. Using the formula defin-
ing the Gray comma construction, we get that this cell is sent to (u ∗0 p1, v ∗0 p2)
in Homol(A ↓C B, A′×B′) by the upper path of the square. But the Gray ω-functor ×
send this same cell to (u∗0 q1, v ∗0 q2) in Homol(A×B, A′ ×B′), where q1 : A×B → A
and q2 : A × B → B are the two projections, and since

(u ∗0 q1, v ∗0 q2) ∗0 p = (u ∗0 q1 ∗0 p, v ∗0 q2 ∗0 p) = (u ∗0 p1, v ∗0 p2) ,

the square indeed commutes.
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7. Strict Functorialities of the comma construction

The purpose of this section is to study the functorialities of the comma construction
when restricted to strict k-transformations.

7.1. — Fix C an ω-category. The inclusion ω-Catcart ↪→ ω-ℂatoplax induces inclusions

ω-ℂatoplax/C ↪→ ω-Catcart/C and ω-ℂatoplax
to
/ C ↪→ ω-Catcart

to
/ C .

In particular, we can restrict the Gray ω-functor

− ↓C − : ω-ℂatoplax/C × ω-ℂatoplax
to
/ C → ω-ℂatoplax

to a Gray ω-functor

− ↓C − : ω-Catcart/C × ω-Catcart
to
/ C → ω-ℂatoplax .

The purpose of this section is to prove that this Gray ω-functor actually lands in
ω-Catcart.

The strategy is obvious. We gave in 6.2 a formula for this Gray ω-functor and it
suffices to check that the formula defines a cell of ω-Catcart. But this formula involves
the oplax transformation γ of the universal 2-square which does not live in ω-Catcart!
Nevertheless, we will see that the result is indeed in ω-Catcart. To do so, we will
introduce an intermediate slice ω-category

ω-Catcart/C ↪→ ω-Catcart/ΓC ↪→ ω-ℂatoplax/C

based on the inclusions
ΓHom(A, B) ↪→ Hom(A, ΓB) ↪→ ΓHomoplax(A, B)

of 3.18.

7.2. — Let A and B be two ω-categories. As mentioned above, we defined in 3.18
inclusions

ΓHom(A, B) ↪→ Hom(A, ΓB) ↪→ ΓHomoplax(A, B)
factorising the canonical inclusion.

If B is fixed and A varies, we get inclusions
ΓHom(−, B) ↪→ Hom(−, ΓB) ↪→ ΓHomoplax(−, B)

of skew Gray ω-functors from (ω-Catcart)t to ω-ℂatlax, and hence by Proposition 2.10,
morphisms of right ω-Catcart-modules. In particular, this means that if α is a cell of
Hom(A′, ΓB) and u is a cell of Hom(A, A′), then α ∗r u, where ∗r denotes the right
action of 5.3, is a cell of Hom(A, ΓB).

Moreover, for the same reasons as in 5.5, each of the three ω-categories
ΓHom(A, B) ↪→ Hom(A, ΓB) ↪→ ΓHomoplax(A, B)

is the object of morphisms of a category internal to ω-Cat and, by naturality, the two
inclusions are morphisms of internal categories. In particular, if α and β are i-cells of
Hom(A, ΓB) such that 𝕥(β) = 𝕤(α), then β ∗c α, where ∗c denotes the composition of
cylinders of 3.7, is an i-cell of Hom(A, ΓB).
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7.3. — Fix C an ω-category. We define an ω-category ω-Catcart/ΓC in the following
way.

The objects of ω-Catcart/ΓC are the same as the ones of ω-Catcart/C or of
ω-ℂatoplax/C , that is, the ω-categories A endowed with an ω-functor f : A → C.

If (A, f : A → C) and (A′, f ′ : A′ → C) are two such objects, we set
Homω-Cat/ΓC

((A, f), (A′, f ′))

= Hom(A, A′) ×Hom(A,C) Hom(A, ΓC) ×Hom(A,C) {f} .
For the moment, ω-Catcart/ΓC has only been defined as a graph enriched in ω-Cat.

Recall that
Homω-Catcart/C

((A, f), (A′, f ′))

= Hom(A, A′) ×Hom(A,C) ΓHom(A, C) ×Hom(A,C) {f}
and

Homω-ℂatoplax/C
((A, f), (A′, f ′))

= Homoplax(A, A′) ×Homoplax(A,C) ΓHomoplax(A, C) ×Homoplax(A,C) {f} .

Therefore, the monomorphisms
ΓHom(A, C) ↪→ Hom(A, ΓC) ↪→ ΓHomoplax(A, C) ,

as they are compatible with the source and target operations of internal categories,
induce monomorphisms between these fiber products and hence monomorphisms of
graphs enriched in ω-Cat

ω-Catcart/C ↪→ ω-Catcart/ΓC ↪→ ω-ℂatoplax/C .
We will consider these monomorphisms as inclusions. Note that ω-Catcart/ΓC have
not only the same objects as ω-ℂatoplax/C but also the same 1-cells. (But their i-cells
differ for i > 1.)

Proposition 7.4. — If C is an ω-category, then ω-Catcart/ΓC is a sub-Gray
ω-category of ω-Cat/C . It it actually a strict ω-category.

Proof. — Let (A, f : A → C), (A′, f ′ : A′ → C) and (A′′, f ′′ : A′′ → C) be three
objects of ω-Cat/ΓC and let (u, α) be a cell of Homω-Cat/ΓC

((A, f), (A′, f ′)) and
(u′, α′) a cell of Homω-Cat/ΓC

((A′, f ′), (A′′, f ′′)). By definition, their composition in
ω-ℂatoplax/C is given by

(u′, α′) ∗0 (u, α) =
(
u′ ∗0 u, α ∗c (α′ ∗r u)

)
,

where ∗r denotes the right action of 5.3 and ∗c denotes the internal composition
on ΓHomoplax(A, C) of 3.7. Since ω-Catcart is a sub-Gray ω-category of ω-ℂatoplax,
the cell u′∗0u lives in ω-Catcart. Moreover, by 7.3, the cell α′∗r u is in Hom(A, ΓC) and
hence so is α∗c (α′ ∗r u), thereby proving the stability by composition of ω-Catcart/ΓC .
The compatibility with units is obvious.

The fact that ω-Catcart/ΓC is a strict ω-category follows from the formula giving
the composition and the fact that ω-Catcart is a strict ω-category.
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7.5. — Let C be an ω-category. One defines similarly an ω-category ω-Catcart
to
/Γ C

with Gray inclusions

ω-Catcart
to
/ C ↪→ ω-Catcart

to
/Γ C ↪→ ω-ℂatoplax

to
/ C .

The objects of ω-Catcart
to
/Γ C are the ω-categories B endowed with an ω-functor

g : B → C, and if (B, g : B → C) and (B′, g′ : B′ → C) are two such objects, we have

Hom
ω-Cat

to
/ΓC

((B, g), (B′, g′))

= {g} ×Hom(B,C) Hom(B, ΓC) ×Hom(B,C) Hom(B, B′) .

Proposition 7.6. — Let C be an ω-category. The Gray ω-functor

− ↓C − : ω-ℂatoplax/C × ω-ℂatoplax
to
/ C → ω-ℂatoplax

induces an ω-functor

− ↓C − : ω-Catcart/ΓC × ω-Catcart
to
/Γ C → ω-Catcart

and in particular an ω-functor

− ↓C − : ω-Catcart/C × ω-Catcart
to
/ C → ω-Catcart .

Proof. — Consider A, A′, B, B′ four ω-categories over C. We have to show that the
composite ω-functor

Homω-ℂatoplax/ΓC
((A, f), (A′, f ′)) × Hom

ω-ℂatoplax
to
/ΓC

((B, g), (B′, g′))

Homω-ℂatoplax/C
((A, f), (A′, f ′)) × Hom

ω-ℂatoplax
to
/C

((B, g), (B′, g′))

Homoplax(A ↓C B, A′) ↓
Homoplax(A↓CB,C)

Homoplax(A ↓C B, B′)

Homoplax(A ↓C B, A′ ↓C B′)

−↓C−

≃

factors through
Hom(A ↓C B, A′ ↓C B′) .

Using 6.2, and with its notation, this ω-functor is given on i-cells by

(u, α, β, v) 7→ (u ∗0 p1, (β ∗r p2) ∗c γ ∗c (α ∗r p1), v ∗0 p2) ,

where

(u, α, β, v) is in Hom(A, A′)i × Hom(A, ΓC)i × Hom(B, ΓC)i × Hom(B, B′)i .
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Note that γ can be seen as a 0-cell of Hom(A ↓C B, ΓC). Using 7.3, we get that

(β ∗r p2) ∗c γ ∗c (α ∗r p1)

is actually an i-cell in Hom(A ↓C B, ΓC), and in particular,

(u ∗0 p1, (β ∗r p2) ∗c γ ∗c (α ∗r p1), v ∗0 p2)

is an i-cell of

Hom(A ↓C B, A′) ×
Hom(A↓CB,C)

Hom(A ↓C B, ΓC) ×
Hom(A↓CB,C)

Hom(A ↓C B, B′)

which is canonically isomorphic to

Hom(A ↓C B, A′ ×C ΓC ×C B′) ≃ Hom(A ↓C B, A′ ↓C B′) .

As this canonical isomorphism is compatible with the canonical isomorphism between

Homoplax(A ↓C B, A′) ×
Homoplax(A↓C B,C)

Homoplax(A ↓C B, ΓC) ×
Homoplax(A↓CB,C)

Homoplax(A ↓C B, B′)

and

Homoplax(A ↓C B, A′ ×C ΓC ×C B′) ≃ Homoplax(A ↓C B, A′ ↓C B′) ,

this proves the result.

Remark 7.7. — As in Remark 6.4, if A and B are two fixed ω-categories, there is
a canonical embedding

Hom(A, C)◦ × Hom(B, C)to ↪→ ω-Catcart/C × ω-Catcart
to
/ C

and the comma construction thus restricts to an ω-functor

− ↓C − : Hom(A, C)◦ × Hom(B, C)to → ω-Catcart .

Similarly, if A is ω-category, let us denote by HomΓ(A, B) the total dual of the
fiber at A of the forgetful ω-functor

U : ω-Catcart/ΓC → ω-Catcart .

Note that we have inclusions

Hom(A, C) ↪→ HomΓ(A, C) ↪→ Homoplax(A, C) .

By definition (and duality), we have a canonical embedding

HomΓ(A, C)◦ × HomΓ(B, C)to ↪→ ω-Catcart/C × ω-Catcart
to
/ C

and the comma construction also restricts to an ω-functor

− ↓C − : HomΓ(A, C)◦ × HomΓ(B, C)to → ω-Catcart .
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Remark 7.8. — By duality (see Remark 6.5), Proposition 7.6 implies that the lax
comma construction induce an ω-functor

− ↓′
C − : ω-Catcart

top
/ C × ω-Catcart

co
/ C → ω-Catcart ,

and, more generally, an ω-functor

− ↓′
C − : ω-Catcart

top
/Γ′ C × ω-Catcart

co
/Γ′ C → ω-Catcart ,

where the ω-category

ω-Catcart
top
/Γ′ C and ω-Catcart

co
/Γ′ C

are defined from their undecorated analogue by replacing in the definition of the
ω-category of morphisms the construction Γ′ Hom(−, C) by Hom(−, Γ′C). (Recall
that Γ′X = Homoplax(D1, X).)

Corollary 7.9. — If B → C is an ω-functor, then we have an ω-functor

− ↓C B : ω-Catcart/ΓC → ω-Catcart

and in particular an ω-functor

− ↓C B : ω-Catcart/C → ω-Catcart ,

and if A → C is an ω-functor, then we have an ω-functor

A ↓C − : ω-Catcart
to
/Γ C → ω-Catcart

and in particular an ω-functor

A ↓C − : ω-Catcart
to
/ C → ω-Catcart .

8. Application: Grothendieck construction for ω-categories

Our main motivation for studying the functorialities of the comma construction
was the Grothendieck construction for ω-categories, to which we will devote a whole
paper [2]. In this short final section, we define the Grothendieck construction for
ω-categories in terms of comma ω-categories and we deduce functoriality results for
the Grothendieck construction.

8.1. — Let I be an ω-category and let F : I◦ → ω-Catcart be an ω-functor. We define
the (contravariant) Grothendieck construction

∫ ◦
I

F of F to be the total dual of the
comma construction of the diagram

D0 ω-Catcart I◦ ,D0 F

where the left arrow corresponds to the object D0 of ω-Catcart. In other words, we
have ∫ ◦

I
F =

(
D0 ↓ω-Catcart

F
)◦ .

The second projection of the comma construction induces an ω-functor p :
∫ ◦

I
F → I.
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Remark 8.2. — Notes that although the ω-category ω-Catcart is not small, the
comma construction D0 ↓ F makes sense and is a small ω-category.

Remark 8.3. — By Example 4.2, the Grothendieck construction of an ω-functor
F : I◦ → ω-Catcart is the total dual of a relative slice:∫ ◦

I
F =

(
D0 ↓ F

)◦ =
(
D0\ω-Catcart

)◦ .

In other words, we have a pullback square

(
∫ ◦

I
F )◦ D0\ω-Catcart

I◦ ω-Catcart ,
U

F

⌟

where U denotes the forgetful ω-functor.

8.4. — Let F : I◦ → ω-Cat be an ω-functor. To convince ourself that our definition
of the Grothendieck construction is reasonable, let us describe concretely the cells
of

∫ ◦
I

F in low dimensions.
By definition, an object of

∫ ◦
I

F corresponds to an object i of I and an ω-func-
tor x : D0 → F (i). These objects can thus be identified with pairs (i, x), where i is
an object of I and x an object of F (i).

A 1-cell of
∫ ◦

I
F corresponds to a 1-cell f : i → i′ of I and a 2-triangle

D0

x′

��

x

��

F (i′)
F (f)

// F (i)

α
rz

in ω-ℂatoplax. But the data of such an oplax transformation α is equivalent to the
data of a 1-cell α : x → F (f)(x′) of F (i). The 1-cells from (i, x) to (i′, x′) can thus be
identified with pairs (f : i → i′, α : x → F (f)(x′)).

A 2-cell of
∫ ◦

I
F corresponds to 2-cell γ : f ⇒ f ′ : i → i′ of I and a 3-cone

D0

x′

��

x

��

F (i′) F (f ′)
++

F (f)
33F (γ)�� F (i)

α′

}�
αks

ΛQ^

in ω-ℂatoplax. But the data of such an oplax 2-transformation Λ is equivalent to the
data of a 2-cell Λ: α ⇒ F (γ)x′ ∗0 α′ of F (i). The 2-cells from (f, α) to (f ′, α′) can
thus be identified with these pairs (γ, Λ).
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Remark 8.5. — The Grothendieck construction for ω-categories was first defined by
Warren [8] using explicit formulas. In [2], we will show that our definition is equivalent
to Warren’s one (up to some duality, as Warren defines the covariant Grothendieck
construction).

8.6. — We will denote by ω-ℂAToplax the (very large) Gray ω-category of possibly
large ω-categories, ω-functors, oplax transformations and higher oplax transforma-
tions between them. We have a fully faithful inclusion ω-ℂatoplax ↪→ ω-ℂAToplax.
The ω-category ω-Catcart is an object of ω-ℂAToplax. When we consider ω-Catcart as
an object of ω-ℂAToplax, we denote it by {ω-Catcart}. In particular, we will write

ω-ℂatoplax
to
/ {ω-Catcart}

for the Gray ω-category defined by the pullback

ω-ℂatoplax
to
/ {ω-Catcart} ω-ℂAToplax

to
/ {ω-Catcart }

ω-ℂatoplax ω-ℂAToplax ,
U

⌟

where ω-ℂAToplax
to
/ {ω-Catcart } is one of the (large) slice Gray ω-categories of 5.14

and U is the forgetful Gray ω-functor.

Theorem 8.7. — The Grothendieck construction defines a Gray ω-functor∫ ◦ :
(
ω-ℂatoplax

to
/ {ω-Catcart}

)to → ω-ℂatoplax

F : I◦ → ω-Catcart 7→
∫ ◦

I
F .

Proof. — The Grothendieck construction factors as(
ω-ℂatoplax

to
/ {ω-Catcart}

)to (
ω-ℂatoplax

)to
ω-ℂatoplax .D0↓− D◦

But the left arrow is a Gray ω-functor by Theorem 6.3 (and more precisely Corol-
lary 7.9) and the right arrow is a Gray ω-functor by 3.24.

Proposition 8.8. — The ω-functor p :
∫ ◦

I
F → I is natural in F : I◦ → ω-Catcart

in the sense that it defines a natural transformation (in the enriched sense) from the
Gray ω-functor ∫ ◦ :

(
ω-ℂatoplax

to
/ {ω-Catcart}

)to → ω-ℂatoplax

to the Gray ω-functor obtained by composing(
ω-ℂatoplax

to
/ {ω-Catcart}

)to (
ω-ℂatoplax)to ω-ℂatoplax ,U D◦

where Do is the total dual.

Proof. — This is a particular case of the analogous result for the comma construction,
that is, Proposition 6.8.

draft — 19/02/2025 — 11:34:57



Draft

LAX FUNCTORIALITIES OF THE COMMA CONSTRUCTION FOR ω-CATEGORIES 49

Proposition 8.9. — If I is a fixed ω-category, the Grothendieck construction re-
stricts to a Gray ω-functor∫ ◦

I
: Homoplax(I, ω-Catcart) → ω-ℂatoplax .

Proof. — By Remark 6.4, there is a canonical embedding

Homoplax(I, ω-Catcart)to ↪→ ω-ℂatoplax
to
/ {ω-Catcart} ,

hence the result, by the previous proposition.

8.10. — We are now going to state the strict functorialities of the Grothendieck
construction. We can define as in 8.6 a large strict ω-category

ω-Catcart
to
/ {ω-Catcart} ω-CATcart

to
/ {ω-Catcart }

ω-Catcart ω-CATcart ,
U

⌟

where ω-CATcart denotes the very large strict ω-category of possibly large ω-categories,
ω-functors, strict transformations and higher strict transformations between them.

Proposition 8.11. — The Grothendieck construction restricts to a strict ω-functor∫ ◦ :
(
ω-Catcart

to
/ {ω-Catcart}

)to → ω-Catcart ,
and, if I is a fixed ω-category, to a strict ω-functor∫ ◦

I
: Hom(I, ω-Catcart) → ω-Catcart .

Proof. — This follows from the analogous result from the comma construction, that
is, Proposition 7.6.

Remark 8.12. — By Remark 7.7 and using the same notation, the second ω-functor
of the above proposition actually extends to an ω-functor∫ ◦

I
: HomΓ(I, ω-Catcart) → ω-Catcart .

We end the paper by an opening on a definition of the Grothendieck construction
for Gray ω-categories, based on Remark 8.3.

8.13. — Let ℂ be a Gray ω-category, so that ℂ◦ is skew Gray ω-category, and fix
F : ℂ◦ → ω-ℂatlax a skew Gray ω-functor. We define the Grothendieck construc-
tion

∫ ◦
ℂ F of F as the Gray ω-category obtained as the total dual of the pullback of

skew Gray ω-category
(
∫ ◦
ℂ F )◦ D0\ω-ℂatlax

ℂ◦ ω-ℂatlax ,
U

F

⌟

where D0\ω-ℂatlax is one of the slice skew Gray ω-categories defined in 5.14 and U
is the forgetful skew Gray ω-functor.
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By Remark 8.3, in the case where ℂ comes from a strict ω-category and the
ω-functor F factors through ω-Catcart ↪→ ω-ℂatlax, we recover the Grothendieck con-
struction defined in 8.1.

In future work, we plan to investigate this Grothendieck construction for Gray
ω-categories.

References
[1] D. Ara – “A Quillen Theorem B for strict ω-categories”, J. Lond. Math. Soc. (2) 100

(2019), no. 2, p. 470–497.
[2] D. Ara, A. Gagna & L. Guetta – “The Grothendieck construction for strict

ω-categories”, work in progress.
[3] D. Ara & G. Maltsiniotis – “Un théorème A de Quillen pour les ω-catégories

strictes II : la preuve ω-catégorique”, High. Struct. 4 (2020), no. 1, p. 284–388.
[4] , “Joint et tranches pour les ω-catégories strictes”, Mém. Soc. Math. Fr. (N.S.)

165 (2020).
[5] Y. Lafont & F. Métayer – “Polygraphic resolutions and homology of monoids”, J.

Pure Appl. Algebra 213 (2009), no. 6, p. 947–968.
[6] Y. Lafont, F. Métayer & K. Worytkiewicz – “A folk model structure on omega-

cat”, Adv. Math. 224 (2010), no. 3, p. 1183–1231.
[7] R. W. Thomason – “Homotopy colimits in the category of small categories”, Math.

Proc. Cambridge Philos. Soc. 85 (1979), no. 1, p. 91–109.
[8] M. A. Warren – “The strict ω-groupoid interpretation of type theory”, in Models, logics,

and higher-dimensional categories: A tribute to the work of Mihály Makkai, American
Mathematical Society, 2011, p. 291–340.

Dimitri Ara, Aix Marseille Univ, CNRS, I2M, Marseille, France
E-mail : dimitri.ara@univ-amu.fr
Url : http://www.i2m.univ-amu.fr/perso/dimitri.ara/

Léonard Guetta, Utrecht University, Utrecht, The Netherlands
E-mail : l.s.guetta@uu.nl
Url : https://leoguetta.github.io/

draft — 19/02/2025 — 11:34:57

http://www.i2m.univ-amu.fr/perso/dimitri.ara/
https://leoguetta.github.io/

	1. Introduction
	2. Preliminaries on enriched categories
	3. Preliminaries on strict ∞-categories
	4. Comma ∞-categories
	5. Slices of Gray ∞-categories
	6. Lax functorialities of the comma construction
	7. Strict Functorialities of the comma construction
	8. Application: Grothendieck construction for ∞-categories
	References

