
ADVANCED MATHEMATICS 2023-2024

EXERCISES – WEEK 1

* Exercise 1

Which of the following subsets of Q is bounded below? Bounded above?
Has a least upper bound? Has a greatest lower bound?

• {x ∈ Q | 0 < x < 1},
• {x ∈ Q | 0 ≤ x ≤ 1},
• {x ∈ Q | 0 ≤ x},
• {x ∈ Q |x ≤ 0},
• {1− 1

n |n ∈ N, n ̸= 0}.

Answer of exercise 1

The first two ones are both bounded below and bounded above, and both
have a least upper bound (which is 0 in both cases) and a greatest lower
bound (which is 1 in both cases).

The third one is bounded below and has a greatest lower bound (which
is 0) but is not bounded above.

The fourth one is bounded above and has a least upper bound (which is
0) but is not bounded below.

The last one is bounded below and have a least upper bound (which is
0). It is also bounded above and has a least upper bound (which is 1).

* Exercise 2

Let (S,≤) be an ordered set. Consider the relation ≤′ on S defined by

x ≤′ y if y ≤ x.

Is (S,≤′) an ordered set?

Answer of exercise 2

(S,≤′) is an ordered set.

• antisymmetry. Let x, y ∈ S with x ≤′ y & y ≤′ x. The first inequal-
ity and the definition of ≤′ gives us that y ≤ x and the second, x ≤ y
respectively. By the antisymmetry of ≤ we get x = y. Therefore, ≤′

is also antisymmetric.
• transitivity. Now let x, y, z ∈ S with x ≤′ y & y ≤′ z. From this and
by definition of ≤′, we get that y ≤ x z ≤ y. Therefore, z ≤ y ≤ x
and by transitivity of ≤ we get z ≤ x. Again, by definition of ≤′ we
get x ≤′ z thus ≤′ is transitive.

• totality. Let x, y ∈ S. Since ≤ is a total order, we have that either
x ≤ y or y ≤ x. This gives us that either y ≤′ x or x ≤′ y, which
means that ≤′ is a total order.

* Exercise 3

1
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Adapt the definitions seen in the lecture to give the precise definitions of
lower bound, greatest lower bound. State the greatest lower bound property.

Answer of exercise 3

Let (S,≤) be an ordered set and A ⊆ S a subset of S. An element x ∈ S
is a lower bound of A if for every element a of A, we have

x ≤ a.

If such a lower bound exists, we say that A is bounded below.
A lower bound x of A is a greatest lower bound (or infimum) if for any

other lower bound x′ of A, we have

x′ ≤ x.

We say that an ordered set (S,≤) has the greatest lower bound property if
every non-empty, bounded below, subset A of S has a greatest lower bound.

** Exercise 4

Show that there is no rational number x such that x2 = 2.
Answer of exercise 4

Suppose there exists a rational number x such that x2 = 2. Then

x =
m

n
,

for some m,n ∈ N with gcd(m,n) = 1. We have that

x2 = 2 ⇒ m2

n2
= 2 ⇒ m2 = 2n2

which means that m2 is an even number. By number theory we know that
m should also be even, i.e. m = 2k for some k ∈ N. Replacing m in the last
equality we get

(2k)2 = 2n2 ⇒ n2 = 2k2

which by the same reasoning means that n is an even number, i.e. n = 2k′

for some k′ ∈ N. Now it is clear that gcd(m,n) = 2 which is a contradiction.

** Exercise 5

Consider the set N of natural integers with the usual order. Show that
every bounded above, non-empty, subset S ⊆ N has a maximum element,
that is an element n ∈ S which is greater than all other elements of S.

What is the difference between this property and the least upper bound
property seen in the lecture?

Answer of exercise 5

Yes it has: let S be a non-empty, bounded above, subset of N and let n
be its number of elements. By hypothesis n ̸= 0. Let us prove the property
by induction on n > 0.

Base case: if n = 1, then the property is trivial.
Inductive case: Suppose that the desired property holds for all non-empty,

bounded above subsets of N of size n− 1. Let S ⊆ N be a non-empty subset
of size n. Since S is non-empty, take any x ∈ S. Consider now the set
S′ = S \{x}. This is a set of size n−1 and thus by the induction hypothesis,
has a maximum, say x∗. Now, since N is a total order we have that either
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x ≤ x∗ or x∗ ≤ x. In the first case, x∗ is the maximum of S and in the second
case x is the maximum of S. In both cases, S has a maximum element.

By the induction principle any non-empty, bounded above subset S of
N has a maximum. The difference with the least upper bound property is
that the maximum element belongs to S, which is stronger than just being
a least upper bound.

** Exercise 6

Show that an ordered set (S,≤) has the least upper bound property if
and only if it has the greatest lower bound property. (Hint: For a subset
A ⊆ S, consider the subset of all the lower bounds of A.)

Answer of exercise 6

We will show that if (S,≤) has the least upper bound property then it
has the greatest lower bound property. The other direction is similar.

Let A ⊆ S be a non-empty subset of S which is bounded below. Define
the set

AL = {x ∈ S | x is a lower bound of A}.
Since we have assumed that A is bounded below, the set AL is non-empty.
Now, since A is non-empty, then by definition of AL any a ∈ A is an upper
bound of AL. Thus, AL is a non-empty subset of S, bounded above. By the
least upper bound property of S we get that AL has a least upper bound,
say x∗.

We show that x∗ is the greatest lower bound of A. Indeed,

• it is a lower bound. Let a ∈ A. For any x ∈ AL, x ≤ a, thus a is an
upper bound of AL. But x∗ is the least upper bound of AL. Thus,
x∗ ≤ a. Since a ∈ A was arbitrary, we conclude that x∗ ≤ a for
every a ∈ A.

• it is the greatest lower bound of A. Indeed, let x ∈ S be a lower
bound of A. This is an element of AL by definition of the latter and
since x∗ is an upper bound of AL we get that x ≤ x∗.

** Exercise 7

Let x > 0 be a real number. Show that there exists a largest integer n
such that n ≤ x. This integer is usually denoted as [x] and referred to as the
integral part of x. (Hint: Use the archimedean property of R and Exercise
5.)

Answer of exercise 7

Consider the set
A = {n ∈ N | n ≤ x}.

By the archimedean property of R we have that there exists n ∈ N such
that x < n, which means that n is an upper bound of A in N. By Exercise
5 we get that A has a maximum and thus we conclude the desired.

[Reminder: Archimedean property: for all a, b > 0 ∈ R there exists n ∈ N
such that a < nb.]
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* Exercise 1

Prove that a convergent sequence is bounded.

Answer of exercise 1

Let (an)n∈N be a convergent sequence of real numbers and suppose it
converges to l ∈ R. We show that it is bounded. For ϵ = 1 we have that
there exists N ∈ N such that for all n ≥ N

|an − l| < 1.

This together with the triangle inequality gives us that for all n ≥ N

|an| = |an − l + l| ≤ |an − l|+ |l| < 1 + |l|.

We have found a bound for all an with n ≥ N . To bound all of them consider
M := max{1 + |l|, |a1|, . . . , |aN |}. It is easy to see that for all n ∈ N

|an| ≤ M.

* Exercise 2

Using the “ϵ-definition” of convergence, prove that the sequence ( 1n)n>1

converges to 0.

Take ϵ > 0. Using the Archimedean property of R for ϵ and 1 we get that
there exists N ∈ N such that

1 < ϵ ·N ⇒ 1

N
< ϵ.

Now, for all n ≥ N we get that∣∣∣∣ 1n
∣∣∣∣ = 1

n
≤ 1

N
< ϵ.

Answer of exercise 2

* Exercise 3

In the lecture, we have seen that given two convergent sequences (un) and
(vn), if un ≤ vn for all n, then limn→+∞ un ≤ limn→+∞ vn. What can we
say if we instead suppose that for all n, we have

un < vn ?

Justify your answer.

Answer of exercise 3

It does not hold that if for all n, un < vn then limn→∞ un < limn→∞ vn.
Take for example,

(
1
n2

)
n∈N and

(
1
n

)
n∈N. They both converge to 0.

1
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** Exercise 4

Let (un) be a convergent real sequence with limit ℓ > 0. Prove that there
exists an N ∈ N such that for all n ≥ N , un > 0.

Answer of exercise 4

Take ϵ = l
2 . Then by the definition of convergence we have that there

exists N ∈ N such that for all n ≥ N

|un − l| < l

2
⇒ 0 <

l

2
< un <

3l

2
.

** Exercise 5

Let (an) and (bn) be two bounded sequences in R. Prove that

lim sup
n→+∞

(an + bn) ≤ lim sup
n→+∞

an + lim sup
n→+∞

bn.

Can this inequality be promoted to an equality? (Justify with an example.)

Answer of exercise 5

Let n ∈ N. By definition of supremum, for all k ≥ n, we have

ak ≤ sup{am |m ≥ n}
and

bk ≤ sup{bm |m ≥ n}.
It follows that for all k ≥ n, we have

ak + bk ≤ sup{am |m ≥ n}+ sup{bm |m ≥ n}.
This means that sup{am |m ≥ n} + sup{bm |m ≥ n} is an upper bound of
the set {ak + bk | k ≥ n}. Hence, for all n ∈ N, we have

sup{ak + bk | k ≥ n} ≤ sup{am |m ≥ n}+ sup{bm |m ≥ n}
(because sup is the least upper bound). Taking the limit of this last equality
proves exactly that

lim sup
n→+∞

(an + bn) ≤ lim sup
n→+∞

an + lim sup
n→+∞

bn.

We cannot promote this to an equality. For example, take an = (−1)n and
bn = (−1)n+1. Then an+bn = 0, so lim sup(an+bn) = 0, but lim sup an = 1
and lim sup bn = 1.

*** Exercise 6

Let (un) be a bounded real sequence. Suppose that m = sup{un |n ≥ 0}
is not attained (i.e. there is no n such that un = m). Prove that

lim sup
n→+∞

un = m.

Answer of exercise 6

Let us prove by induction on n that for all n ≥ 0, we have

sup{uk | k ≥ n} = m,

from which the result follows immediatly.
Base case: for n = 0, this is exactly our hypothesis.
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Inductive case: suppose that the property is true for a fixed n ∈ N. Notice
that we have

{uk | k ≥ n} = {un} ∪ {uk | k ≥ n+ 1}.
In particular, we have

sup{uk | k ≥ n} = max(un, sup{uk | k ≥ n+ 1})
(we use here the fact that supA ∪B = max(supA, supB), which is left as
an easy exercise).

Since we assumed that un ̸= m, we have that

m = sup{uk | k ≥ n} = sup{uk | k ≥ n+ 1}.
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* Exercise 1

Show that if
∑

an converges, then lim an = 0.

Answer of exercise 1

Suppose (Sn)n∈N converges to s ∈ R. Take ϵ > 0. By the convergence
of (Sn)n∈N there exists N ∈ N such that for all n ≥ N , |Sn − s| < ϵ

2 . For
N ′ = N + 1 we have that for all n ≥ N ′, n ≥ N and n − 1 ≥ N . Thus for
all n ≥ N ′ we have

|Sn − s| < ϵ

2
and |Sn−1 − s| < ϵ

2
.

We therefore get that

|an| = |Sn − Sn−1| =|Sn − s+ s− Sn−1|

≤ |Sn − s|+ |Sn−1 − s| < ϵ

2
+

ϵ

2
= ϵ.

* Exercise 2

Show that a sequence (an) converges if and only if the series
∑

(an+1−an)
converges.

Answer of exercise 2

First, observe that the partial n-sum of our series is

Sn = (a1 − a0) + (a2 − a1) + · · ·+ (an − an−1) + (an+1 − an) = an+1 − a0.

Now, the series
∑

n∈N(an+1 − an) converges iff (Sn)n∈N converges iff there
exists a real number s ∈ R such that

lim
n→∞

(an+1 − a0) = s.

This is equivalent to: there exists s ∈ R such that

lim
n→∞

an = s+ a0

which holds iff (an)n∈N converges.

** Exercise 3

Determine the convergence or divergence of the series
∑

an when

(a) an =
√
n+ 1−

√
n,

(b) an =

√
n+ 1−

√
n

n
(Hint: Use Proposition 1.4. of the lecture),

(c) an =
1

1 + xn
, where x is a non-negative real number (Hint: You can

use that if |x| < 1, then limn→+∞ xn = 0.)

1
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Answer of exercise 3

(a) Observe that an = bn+1 − bn where bn =
√
n. We see that∑

n∈N
an =

∑
n∈N

(bn+1 − bn)

and by Exercise 2 we have that since bn =
√
n diverges, so does∑

n∈N(bn+1 − bn) and thus our series as well.
(b) We see that

an =

√
n+ 1−

√
n

n
=

√
n+ 1−

√
n

n
·
√
n+ 1 +

√
n√

n+ 1 +
√
n

=
1

n
√
n+ 1 + n

√
n
≤ 1

n
√
n
=

1

n
3
2

.

Now by Proposition 1.4 since 3
2 > 1 we have that the series

∑
n≥1

1

n
3
2

converges. By Proposition 1.2 we get that
∑

n≥1 an converges since

an ≤ 1

n
3
2
for all n ∈ N.

(c) For |x| < 1 we have that limn∈N xn = 0 therefore limn∈N
1

1+xn = 1 ̸=
0. By Exercise 1 we have that

∑
n∈N an diverges.

Now for x = 1 and with the same reasoning as above, we get that
the

∑
n∈N an diverges since limn∈N

1
1+xn = 1

2 ̸= 0.

For x > 1 we have that 1
x < 1 and by Proposition 1.3 we know

that
∑

n∈N
(
1
x

)n
converges. Moreover we see that for all n ∈ N

an =
1

1 + xn
≤ 1

xn

and thus by Proposition 1.2 we get that
∑

n∈N an converges.

** Exercise 4

Use the root test and the ratio tests on the series

1

2
+

1

3
+

1

22
+

1

32
+

1

23
+

1

33
+ · · · .

Which one allows to conclude?
Answer of exercise 4

The series is
∑

n≥2 an with

a2p =
1

2p
for p ≥ 1

and

a2p+1 =
1

3p
for p ≥ 1.

Let us start with the ratio test. We have

a2p+1

a2p
=

(
2

3

)p

and
a2p+2

a2p+1
=

1

2
·
(
3

2

)p

.



ADVANCED MATHEMATICS 2023-2024 EXERCISES – WEEK 3 3

In other words, the ratio sequence is

2

3
,
3

4
,
4

9
,
9

8
,
8

27
,
27

16
, · · ·

Since the sequence 1
2

(
3
2

)p
is not bounded above, then so is (an+1

an
) and in

particular we have

lim sup
n→+∞

an+1

an
= +∞,

and thus we cannot conclude using the ratio test.
For the root test, we have

2p
√
a2p =

2p

√
1

2p
=

1√
2
,

and

2p+1
√
a2p+1 =

2p+1

√
1

3p
=

1

3
p

2p+1

.

Notice that p
2p+1 ≤ p

2p = 1
2 , so

1

3
p

2p+1
≤ 1√

3
< 1√

2
, from which we deduce

that

lim sup
n→+∞

n
√
an =

1√
2
.

This proves that the series is convergent.

* Exercise 5

(1) Show that the series
∑ 1

n! converges.

(2) Show that the series
∑

( n
√
n − 1)n converges. (Hint: Recall that

limn→+∞ n
√
n = 1)).

Answer of exercise 5

(1) It suffices to apply the ratio test:

lim
n→+∞

n!

(n+ 1)!
= lim

n→+∞

1

n+ 1
= 0,

which proves the convergence.
(2) It suffices to apply the root test:

lim
n→+∞

n
√
n− 1 = 0,

which proves the convergence.

** Exercise 6

Let (an) be a bounded real sequence and α = lim supn→+∞ an. Show that
for every β > α, there exists an N ∈ N such that an < β for all n ≥ N .

Answer of exercise 6

Let ϵ = β − α. By definition of lim sup, there exists an N ∈ N such that
for all n ≥ N

α− ϵ < sup{ak | k ≥ n} < α+ ϵ = β.

In particular, for n = N , we have

sup{ak | k ≥ N} < β,
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which means that for all k ≥ N ,

ak < β.



ADVANCED MATHEMATICS 2023-2024

EXERCISES – WEEK 4

* Exercise 1

Show that a Cauchy sequence in R is bounded.

Answer of exercise 1

Let (xn)n∈N is a real Cauchy sequence. Since (xn)n∈N is Cauchy we have
that for ϵ = 1, there exists N ∈ N such that for all m,n ≥ N

|xm − xn| < 1.

Thus for n = N + 1 we have that for all m ≥ N

|xm − xN+1| < 1

which gives us that for all m ≥ N

|xm| = |xm + xN+1 − xN+1| ≤ |xm − xN+1|+ |xN+1| < 1 + |xN+1|.

For m < N we have that

|xm| ≤ max{|x1|, . . . , |xN−1|}.

Therefore, by choosing the maximum of the above two bounds we have that
our sequence is bounded, i.e. for all m ∈ N

|xm| ≤ max{max{|x1|, . . . , |xN−1|}, 1 + |xN+1|}.

* Exercise 2

Show that the sum of two Cauchy sequences is again a Cauchy sequence.

Answer of exercise 2

Let (an)n∈N, (bn)n∈N be two Cauchy sequences. Let ϵ > 0. There exist
N1, N2 ∈ N such that for all m,n ≥ Ni, i ∈ {1, 2} we have

|am − an| <
ϵ

2
and |bm − bn| <

ϵ

2
.

So for all m,n ≥ max{N1, N2} we have

|(am + bm)− (an + bn)| = |am − an + bm − bn|

≤ |am − an|+ |bm − bn| <
ϵ

2
+

ϵ

2
= ϵ.

* Exercise 3

Using the Cauchy criterion for series, give another proof that if a real
series

∑
an converges absolutely, then it also converges.

1
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Answer of exercise 3

Suppose that
∑

an converges absolutely. By definition this means that
the series

∑
|an| is convergent. Using the Cauchy criterion, this means that

for any ϵ > 0, there exists N ∈ N such that if m ≥ n ≥ N , then∣∣∣∣∣
m∑

k=n

|ak|

∣∣∣∣∣ =
m∑

k=n

|ak| < ϵ.

Using the triangular inequality, we have that∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ ≤
m∑

k=n

|ak| < ϵ.

Using the Cauchy criterion again, this proves that the series
∑

an is con-
vergent.

** Exercise 4

Let p ≥ 0 be a real number. Let (an)n≥1 be the real sequence given by
a1 = 1 and an+1 = an +

1
np for n ≥ 1. For which values of p is this sequence

a Cauchy sequence.

Answer of exercise 4

Because we are in R, a sequence as a Cauchy sequence if and only if it is
convergent. By an immediate induction, we have that for all n ≥ 1,

an =

n∑
k=1

1

kp
.

Hence, the convergence of the sequence (an)n≥1 means exactly the same
thing as the convergence of the series

∑
n≥1

1
np , which is exactly when p > 1

as we have seen in the lecture.

** Exercise 5

Let x ∈ R and y ∈ R. Determine for each of the following case, whether
it is a metric or not:

d1(x, y) = (x− y)2,

d2(x, y) =
√

|x− y|, (Hint: you can use that
√
a+ b ≤

√
a+

√
b),

d3(x, y) = |x2 − y2|,
d4(x, y) = |x− 2y|,

d5(x, y) =
|x− y|

1 + |x− y|
(Hint: show that if a ≥ 0 and b ≥ 0, then

a+ b

1 + a+ b
≤ a

1 + a
+

b

1 + b
).

Answer of exercise 5

• d1 is not a metric as it doesn’t satisfy the triangle inequality. For
example, if we take x = 0, y = 2 and z = 1, we have

d1(x, y) = 22 = 4 and d1(x, z) + d1(z, y) = 12 + 12 = 2.

• d2 is a metric:
– (Symmetry) |x− y| = |y − x| and so

√
|x− y| =

√
|y − x|,
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– (Separation) if
√
|x− y| = 0, then |x− y| = 0, and then x = y,

– (Triangle inequality) Recall that we have

|x− y| ≤ |x− z|+ |z − y|,
as already seen in the lecture. Since

√
is non-decreasing, we

have √
|x− y| ≤

√
|x− y|+ |z − y|,

and using the hint given, we obtain√
|x− y| ≤

√
|x− y|+

√
|z − y|.

• d3 is not a metric as it does not satisfy the separation axiom. For
example, for x = 1 and y = −1, we have d3(x, y) = 0.

• d4 is not a metric as it is not symmetric.
• d5 is a metric:

– (Symmetry) From the fact that |x− y| = |y−x|, it follows that
d5(x, y) = d5(y, x).

– (Separation) If |x−y|
1+|x−y| = 0, then |x− y| = 0, and then x = y.

– (Triangle inequality) Let’s start by proving the inequality given
as a hint. For a, b ∈ R≥0, we have

a

1 + a+ b
≤ a

1 + a
and

b

1 + a+ b
≤ b

1 + b
,

and it follows that
a+ b

1 + a+ b
=

a

1 + a+ b
+

b

1 + a+ b
≤ a

1 + a
+

b

1 + b
.

Now, let’s prove the triangle inequality. First notice that the
function x 7→ x

1+x is non-decreasing (which can be seen by com-

puting the derivative). In particular, since for all x, y, z ∈ R,
we have

|x− y| ≤ |x− z|+ |z − y|,
it follows that

|x− y|
1 + |x− y|

≤ |x− z|+ |z − y|
1 + |x− z|+ |z − y|

≤ |x− z|
1 + |x− z|

+
|z − y|

1 + |z − y|
,

where the second inequality is the one given as a hint.
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** Exercise 1

Finish the proof of Proposition 1.3 of the lecture.

Answer of exercise 1

Suppose that (xn) is convergent to a limit ℓ = (ℓ1, · · · , ℓk) in Rk. Let
ϵ > 0, we know that there exists N ∈ N such that if n ≥ N , then

∥x− ℓ∥ < ϵ.

By the first inequality given in the lecture, we thus have that for 1 ≤ i ≤ k,
we have

|xi,n − ℓi| < ϵ

when n ≥ N . This means exactly that (xi,n)n converges to ℓi for each
1 ≤ i ≤ k.

Conversely, suppose that each sequence (xi,n)n is convergent to ℓi. Let
ϵ > 0, we know that for each 1 ≤ i ≤ k, there exists an Ni such that if
n ≥ Ni, we have

|xi,n − ℓi| < ϵ/k.

In particular, if we set N = max{N1, N2, · · · , Nk}, then if n ≥ N , then

k∑
i=1

|xi,n − ℓi| < ϵ.

It follows then from the second inequality given in the lecture that if n ≥ N ,
then

∥xn − ℓ∥ < ϵ,

with ℓ = (ℓ1, · · · , ℓk).

* Exercise 2

Let (X, d) be a metric space and E ⊆ X. Show that an element x ∈ X is
an accumulation point of E if and only if it is an adherent point of E which
is not isolated.

Answer of exercise 2

The fact that any accumulation point is an adherent point is immediate,
because if E ∩ (Nr(x)−{x}) is non-empty, then so is E ∩Nr(x). Moreover,
and accumulation point is not isolated, because if E ∩ (Nr(x) − {x}) non-
empty for all r > 0, then for all r > 0, E ∩Nr(x) contains at least another
point than x.

Conversely, suppose that x is an adherent point which is not isolated. Let
r > 0, and consider the subset

E ∩ (Nr(x)− {x}).
1
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Since x is an adherent, the subset E ∩Nr(x) is non-empty and necessarily,
there exists another element than x in E∩Nr(x), otherwise this would mean
that x is isolated.

* Exercise 3

In each of the following case, determine the isolated points, the accu-
mulation points, the adherence points and the interior points of the subset
E ⊆ R:

(1) E = [0, 1] ∪ {2},
(2) E = [0, 1) ∪ (1, 2],
(3) E =

{
1
n |n ∈ N− {0}

}
.

Answer of exercise 3

(1) isolated points: {2}, accumulation points: [0, 1], adherent points:
[0, 1] ∪ {2}, interior points: (0, 1).

(2) isolated points: none, accumulation points: [0, 2], adherent points:
[0, 2], interior points: (0, 1) ∪ (1, 2).

(3) isolated points:
{

1
n , n ∈ N

}
, accumulation points: {0}, adherent

points:
{

1
n |n ∈ N− {0}

}
, interior points: none.

[Note: You need to be able to verify why all the above hold.]

* Exercise 4

Consider the following sequence
(
(− 1

n ,
1
n)
)
n≥1

of subsets of R. What is

the intersection
∞⋂
n=1

(− 1

n
,
1

n
)?

Deduce that an (infinite) intersection of open sets is not necessarily an open
set.

Answer of exercise 4

We have that
∞⋂
n=1

(− 1

n
,
1

n
) = {0}.

It is clear that 0 ∈ (− 1
n ,

1
n) for all n ∈ N.

Now, if we take x ∈
⋂∞

n=1(−
1
n ,

1
n) with x ̸= 0, then we have that for all

n ∈ N,

− 1

n
≤ x ≤ 1

n
which means that for all n ∈ N,

0 < |x| ≤ 1

n
,

holds. By applying the Archimedean Property we have that there exists
some n ∈ N such that

1

n
< |x|,

which is a contradiction.
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* Exercise 5

Let (X, d) be a metric space. Show that any open neighborhood is open
in X, that is, for x ∈ X and r > 0, the subset Nr(x) is open in X.

Answer of exercise 5

Let y ∈ Nr(x). We need to show that there exists an r′ > 0 such that
Nr′(y) ⊆ Nr(x). For that, let’s take r′ = r− d(x, y) and notice that for any
z ∈ X we have

d(x, z) ≤ d(x, y) + d(y, z),

hence, if d(y, z) < r′ = r − d(x, y), we have

d(x, z) < r,

which proves that Nr′(y) ⊆ Nr(x).

* Exercise 6

Consider the following subsets of R2, which ones are open? closed?

(1) The sets of points x such that ∥x∥ ≤ 1.
(2) The sets of points x such that ∥x∥ < 1.
(3) The sets of points of R2 with integers coordinates.
(4) The sets of points x = (x, y) such that y > 0.

Answer of exercise 6

(1) This set is closed. There are many ways to prove that, here is one of
them. By Proposition 2.6 of the lecture notes, it suffices to show that
for any convergent sequence (xn) in R2 such that ∥xn∥ ≤ 1 for all
n, then ∥limn→+∞ xn∥ ≤ 1. But the convergence of (xn) implies the
convergence of the real sequence (∥xn∥) to ∥limn→+∞ xn∥ (by the
inverse triangle inequality | ∥x∥ − ∥y∥ | < ∥x− y∥), and the result
follows from the usual results on real sequences.

(2) This subset is nothing than N1(0), hence we have already proven in
Exercise 5 that it is open.

(3) This subset is closed. To see this, let’s prove that its complementary
is open. Let (x, y) be a point in R2 such that neither x nor y is an
integer. We denote by E(x) and E(y) the integral parts of x and y.
Now, if we take r := min{E(x), E(x) + 1, E(y), E(y) + 1}, we have
that r > 0 (because neither x nor y is an integer), and it is easy to
see that Nr((x, y)) ⊂ Ec, where E is the subset of R2 of points with
integer coordinates.

(4) This set is open. There are many ways to provat that, for example
let us prove that its complementary is closed. Let ((xn, yn)) be a
convergent sequence to (ℓx, ℓy) and such that yn ≤ 0. Then, by
the usual properties of real sequences, ℓy = limn→+∞ yn ≤ 0, which
proves exactly what we want.

* Exercise 7

Prove Corollary 2.13 of the lecture.
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Answer of exercise 7

We make use of the Proposition 2.12 of the lecture notes. First, suppose
that E ⊆ Y is open relative to Y . Then we have that there exists an open
U ⊆ X such that

E = U ∩ Y.

Since E is a binary intersection of two open sets in X, it is open in X.

For the other direction, let E ⊆ Y be an open set in X. Then

E = E ∩ Y,

which means that E is open relative to Y .



ADVANCED MATHEMATICS 2023-2024

EXERCISES – WEEK 6

* Exercise 1

Let A,B be compact subsets of a metric space (X, d). Show that A ∪ B
and A ∩B are also compact subsets.

Answer of exercise 1

Let C ⊆ A∪B infinite. We can see that C = C1 ∪C2, where C1 ⊆ A and
C2 ⊆ B. We can take now the Ci, i ∈ {1, 2} with the largest cardinality and
this should be infinite. Say that this is C1. Then by compactness of A we
have that C1 has a limit point in A. This limit point is also a limit point of
C (why?) and we have the desired.

Let C ⊆ A ∩ B infinite. Then, C ⊆ A and, since A is compact, there
exists a limit point x ∈ A of C. This means that for every n ∈ N \ {0}
there exists xn ∈ C such that d(x, xn) <

1
n . Observe that xn → x. Consider

now the set C ′ = {xn : n ∈ N \ {0}}. If C ′ is finite then this means that
the sequence is eventually constant and so there exists n ∈ N such that
x = xn ∈ C ′ ⊆ C ⊆ A ∩ B ⊆ B. If C ′ is infinite, then by compactness
of B and the fact that C ′ ⊆ C ⊆ B, there exists a limit point y ∈ B of
C ′. This again means that for every k ∈ N \ {0} there exists nk ∈ C ′ such
that d(y, xnk

) < 1
k . Therefore, xnk

→ y, but since xn → x, we have also
that xnk

→ x. By the uniqueness of the limit of a sequence, we deduce that
x = y ∈ A ∩B.

[Note that there are other easier ways to solve this, using the characteri-
zations of compactness.]

* Exercise 2

Let (xn) be a sequence in a metric space (X, d). Show that the following
are equivalent:

(1) (xn) converges to ℓ
(2) every subsequence of (xn) converges to ℓ,
(3) the subsequences (x2n) and (x2n+1) converges to ℓ.

Answer of exercise 2

(1) ⇒ (2). Suppose (xn)n converges to l. Let (xnk
)k be a subsequence of

(xn)n. Let ϵ > 0. Then we know since (xn)n converges to l that there exists
N ∈ N such that ∀n ≥ N we have:

d(xn, l) < ϵ.

But for all k such that nk ≥ N we now have that:

d(xnk
, l) < ϵ,

which concludes that (xnk
)k converges.

1
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(2) ⇒ (3). Suppose that every subsequence of (xn)n converges to l. Then
it is clear that also the subsequences (x2n)n and (x2n+1)n converge to l.

(3) ⇒ (1). Suppose that the subsequences (x2n)n and (x2n+1)n converge
to l. Let ϵ > 0. We know that these two subsequences converge to l, meaning
that there exist N1, N2 ∈ N such that for all n such that 2n ≥ N1 and for
all n such that 2n+ 1 ≥ N2 we have

d(x2n, l) < ϵ and d(x2n+1, l) < ϵ.

Now, for N = max{N1, N2}, we have that for all n ≥ N , n = 2k or n =
2k+1 for some k, meaning that xn either belongs in the even subsequence or
in the odd one. Thus, by the above inequalities, we get that in both cases,
for all n ≥ N

d(xn, l) < ϵ.

Therefore, (xn)n converges to l.

** Exercise 3

Determine which of the following subsets of R2 are compact:

(1) A = (Q ∩ [0, 1])× [0, 1],
(2) B = {(x, y) ∈ R2 |x = 0},
(3) C = ({0} ∪ { 1

n |n ∈ N>0})× [0, 1],

(4) D = {( 1n ,
n−1
n ) |n ∈ N>0}.

Answer of exercise 3

First, we note that we will make use of the result of Exercise 4 on R2 and
of the following observation:

If A×B ⊆ R2 is closed then A and B are also closed. Or in other words,
if A and B are not closed then A×B is also not closed.

(1) A is not compact. It is bounded but is is not closed, since Q∩ [0, 1] is
not closed (every irrational is an adherent point of this set but it does
not belong in it). [Note here that we made use of the observation
above.]

(2) B is not compact, since it is not bounded in the second coordinate.
(3) C is compact. We observe that C ⊆ [0, 1] × [0, 1] so it is bounded

and that it is also closed. Indeed, let (x, y) be an adherent point of
C. If (x, y) ̸∈ C then we can distinguish two cases. Either (x, y) ∈
[0, 1] × [0, 1] or is in the complement of the latter. If it is in the
complement then it is simple to find an appropriate radius for a
neighborhood around (x, y) so this has no intersection with C, and
thus we have a contradiction. Now, if (x, y) is in [0, 1]×[0, 1], then the
x coordinate is in the interval ( 1n ,

1
n+1) for some n ∈ N. Therefore,

by choosing r < 1
n(n+1) (the distance of these two vertical lines), we

have our desired neighborhood that does not intersect C. Again we
arrive at a contradiction. Thus, C is closed.

(4) D is not compact, since it is not closed. It has an accumulation
point, namely (0, 1), that is not in D. But then (0, 1) is obviously
also an adherent point which is not in D. Thus, D is not closed.



ADVANCED MATHEMATICS 2023-2024 EXERCISES – WEEK 6 3

* Exercise 4

Show that a subset E ⊂ Rk is bounded in the sense of Definition 1.11
of the lecture notes if and only if there exists M1,M2, · · · ,Mk such that
E ⊆ [−M1,M1]× [−M2,M2]× · · · × [−Mk,Mk].

Answer of exercise 4

Suppose that E ⊆ Rk, which means that there exists and M such that
for all x,y ∈ E, we have ∥x− y∥ ≤ M . If E is empty, then the assertion is
trivial (as ∅ ⊆ [−M1,M1] × [−M2,M2] × · · · × [−Mk,Mk] for any choice of
M1,M2, · · · ,Mk). In the case that E is not empty, let x ∈ E. Notice that
for any y ∈ E, and any 1 ≤ i ≤ k we have

|xi − yi| ≤ ∥x− y∥ ,

and by the triangle inequality, we have

|yi| ≤ |xi|+ |xi − yi|.

In particular, if we set Mi = |xi|+M , then we have

E ⊆ [−M1,M1]× [−M2,M2]× · · · × [−Mk,Mk].

Conversely, suppose that such M1,M2, · · · ,Mk exist. Then, for any x and
y in E and any 1 ≤ i ≤ k, we have

|xi − yi| ≤ 2Mi.

Recall now that

∥x− y∥ ≤
√
k max
1≤i≤k

|xi − yi|.

Thus, if we set M =
√
kmax1≤i≤k 2Mi, we have that for all x,y ∈ E,

∥x− y∥ ≤ M.

NB: You don’t have to know metric spaces for the midterm or final exam.
The solutions of the following exercices are just given as an indication (and
are less detailed that other solutions).

* Exercise 5

Show Proposition 2.4. and 2.5 of the lecture notes.

Answer of exercise 5

• Proposition 2.4: Let F ⊆ X a closed subest of a complete metric
space. Let (xn) be a Cauchy sequence in F . Because X is complete,
this sequence admits a limit in X, but because F is closed, this limit
is actually in F . Hence, this proves that F is complete.

• Proposition 2.5: Let X be a compact metric space and let (xn) be
a Cauchy sequence in X. By compacity, xn admits a subsequential
limit in X. To conclude let us prove the following general fact.

If a Cauchy sequence (xn) admits a subsequential limit, then it is convergent.
Let (xnk

) be a subsequence which converges to ℓ. Let us show that ℓ is also
the limit of (xn). For any ϵ > 0, there exists N ∈ N such that if n,m ≥ N ,
then

d(xn, xm) < ϵ.
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In particular, for all n ≥ N and all nk ≥ N , we have

d(xn, xnk
) < ϵ.

By taking the limit when nk tends to +∞, we obtain

d(xn, ℓ) ≤ ϵ

(because d is continuous). This proves that ℓ is the limit of (xn).
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* Exercise 1

Using the “epsilon-delta” definition of continuity, show that the function
R → R, x 7→ x2 is continuous.

Answer of exercise 1

We need to prove that the function is continuous in all real numbers. Let
x0 ∈ R and let ϵ > 0. Choose δ = 1

2 min{1, ϵ
1+2|x0|}. Now, let x ∈ R. We see

that if |x− x0| < δ then

|f(x)− f(x0)| = |x2 − x20| = |(x− x0)(x+ x0)|
= |(x− x0)(x− x0 + 2x0)|
≤ |(x− x0)

2|+ |2x0(x− x0)|
< δ2 + 2|x0|δ < 1 · δ + 2|x0|δ
= δ(1 + 2|x0|) < ϵ.

* Exercise 2

Let f : R → R be the function defined as

f(x) =

{
0 if x < 0

1 if x ≥ 0.

Using the “epsilon-delta” definition of continuity, show that the function f
is not continuous at 0.

Answer of exercise 2

We need to prove that f is not continuous in x0 = 0, so we need to find
an ϵ > 0 such that for all δ > 0, there exists x ∈ R such that

if |x| < δ then |f(x)− f(0)| ≥ ϵ.

Let ϵ = 1. For every δ > 0 let x = − δ
2 . Then we see that |x| < δ holds and

that

|f(x)− f(0)| x<0
= |0− 1| = 1 ≥ ϵ.

* Exercise 3

Let (X, d) be a metric space. Show that the metric d : X ×X → R≥0 is
a continuous function.

Answer of exercise 3

To make sense of the statement, we need to equipX×X with a metric. We
are going to use the metric dX×X((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)},
which we have seen in the second homework (applied to the case that Y =

1
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X). Notice that a sequence (xn, yn) in X × X converges to (ℓx, ℓy) if and
only if (xn) converges to ℓx and (yn) converges to ℓy in X.

Now let (xn, yn) be a sequence converging to (ℓx, ℓy) in X ×X. We need
to show that the (real) sequence (d(xn, yn)) converges to d(ℓx, ℓy). Let ϵ > 0,
there exists N ∈ N such that if n ≥ N , then

d(xn, ℓx) < ϵ/2,

and

d(yn, ℓy) < ϵ/2.

Now, because of the triangle inequality and symetry, we have that

d(xn, yn) ≤ d(xn, ℓx) + d(ℓx, ℓy) + d(yn, ℓy),

from which we deduce that

(1) d(xn, yn)− d(ℓx, ℓy) ≤ d(xn, ℓx) + d(ℓy, yn).

Similarly, we have

d(ℓx, ℓy) ≤ d(xn, ℓx) + d(xn, yn) + d(yn, ℓy),

from which we deduce that

(2) d(ℓx, ℓy)− d(xn, yn) ≤ d(xn, ℓx) + d(ℓy, yn).

Combining (1) et (2) give that

|d(xn, yn)− d(ℓx, ℓy)| ≤ d(xn, ℓx) + d(ℓy, yn).

In particular, for n ≥ N , we have

|d(xn, yn)− d(ℓx, ℓy)| < ϵ,

which means, by definition, that the sequence (d(xn, yn)) converges to d(ℓx, ℓy).

* Exercise 4

Using the properties of continuous functions in relation with open and
closed subsets, give a very short proofs that the following subsets of R2 are
open or closed (to be determined in each case):

(1) the subset of x such that ∥x∥ = 1,
(2) the subset of x such that ∥x∥ ≤ 1,
(3) the subset of x such that ∥x∥ < 1.

Answer of exercise 4

Consider the function

R2 → R

(x, y) 7→
√
x2 + y2 = ∥(x, y)∥ .

This function is continuous, and thus we can deduce that

(1) this subset is closed as it is equal to the pre-image f−1({1}) and {1}
is closed in R,

(2) this subset is closed as it is equal to the pre-image f−1([0, 1]) and
[0, 1] is closed in R,

(3) this subset is open as it is equal to the pre-image f−1((−1, 1)), and
(−1, 1) is open in R.
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Remark: For the third subset, it is also true that it is equal to f−1([0,−1))
(as the function f never takes negative values), but this doesn’t give much
information because [0,−1) is not open (or closed for that matter). Hence,
(−1, 1) was conveniently chosen to show that the subset is open.

** Exercise 5

Show that functions R2 → R, (x, y) 7→ max{x, y} and (x, y) 7→ min{x, y}
are continuous.

Answer of exercise 5

It suffices to notice that

max{x, y} =
x+ y + |x− y|

2
and

min{x, y} =
x+ y − |x− y|

2
.

Since the absolute value function is continuous, the functions min and max
are continuous by composition, sum and multiplication by a scalar of con-
tinuous functions.

** Exercise 6

Let f : [0, 1] → [0, 1] be a continuous function. Show that there exists
an x ∈ [0, 1] such that f(x) = x. (Hint: use the mean-value theorem on a
well-chosen function.)

Answer of exercise 6

Let g : [0, 1] → [0, 1] the function defined by g(x) = f(x)−x. This function
is continuous and we have

g(0) = f(0)− 0 ≥ 0

and
g(1) = f(1)− 1 ≤ 1 (because f(1) ≤ 1 by hypothesis).

Hence by the mean-value theorem, there exists 0 ≤ x0 ≤ 1 such that g(x0) =
0, which means exactly that f(x0) = x0.

** Exercise 7

Prove that any polynomial function f : R → R of degree 3, f(x) = ax3 +
bx2 + cx+ d, with a ̸= 0, admits at least one real root (that is, there exists
x0 ∈ R such that f(x0) = 0).

Answer of exercise 7

Suppose that a > 0 (the case a < 0 is symetrical). We have

lim
x→+∞

f(x) = +∞

and
lim

x→−∞
f(x) = −∞.

Since f is continuous (as a polynomial function), we can apply the mean-
value theorem which shows that there exists an x0 ∈ R such that f(x0) = 0.
(Remark: To properly apply the mean value theorem as stated in the lecture,
it suffices to notice that because the limit at +∞ is +∞ and the limit at
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−∞ is −∞, there necessarily exists x < y in R such that f(x) < 0 and
f(y) > 0.)



ADVANCED MATHEMATICS 2023-2024

EXERCISES – WEEK 9

* Exercise 1

Show Corollary 1.4 of the lecture notes

** Exercise 2

Let f : X → Y be a bijective continuous function (recall that bijective
means one-to-one and onto) and let f−1 : Y → X be the inverse of f .

Show that if X is compact, then f−1 is also continuous.

1
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Exercise 1

Find the pointwise limit of the given sequence of functions (fn) and verify
if the convergence is uniform.

(1) fn(x) =
x

1 + n2x2
, on I = R.

(2) fn(x) =
nx

1 + n2x2
, on I = [1, 2] and I = [0, 1].

(3) fn(x) =
nx

1 + nx2
, on I = [0, 1] and I = [δ,+∞) with δ > 0.

(4) fn(x) =
1

1 + n2x2
on I = [0, 1], I = (0, 1] and I = [δ, 1] with 0 < δ <

1.

(5) fn(x) = e−|x−n| on I = R.

Exercise 2

Consider the sequence of functions (fn)n≥1, where fn : [0,+∞) is defined
by

fn(x) =
1(

x+ 1
n

)n .
(1) For which x ≥ 0 does the sequence (fn(x)) converge?
(2) Fix a real number t > 1. Prove that the sequence (fn) converges

uniformly on [t,+∞).
(3) Show that the sequence (fn) does not converge uniformly on [1,+∞).
(4) Does the sequence (fn) converge uniformly on (1,+∞)?

Exercise 3

Let (fn) be a sequence of functions, where fn : X → R. Show that if∑
fn converges uniformely on X, then (fn) converges uniformly to the zero

function on X.

Exercise 4

Verify whether the series
∑+∞

n=1 fn converges uniformly on I, for

(1) fn(x) =
sin(nx)

n2 , I = R,
(2) fn(x) = enx, I = (−2,−1),
(3) fn(x) = n(n+ 1)xn, I = [−1 + δ, 1− δ] with 0 < δ < 1.

Exercise 5

Prove Theorem 2.4 of the lecture notes.

1



ADVANCED MATHEMATICS 2023-2024

EXERCISES – WEEK 11

Exercise 1

Let f : R → R defined as

f(x) =

{
x2 sin( 1x) if x ̸= 0

0 if x = 0.

Show that the function is derivable on R. Is f ′ continuous?

Answer of exercise 1

For x ̸= 0, f is derivable at x (because the product and the composition
of derivable functions is derivable), and we have

f ′(x) = 2x sin

(
1

x

)
+ cos

(
1

x

)
.

To show that f is derivable at 0, we compute the following limit

lim
x→0

f(x)− f(0)

x
= lim

x→0
x sin

(
1

x

)
= 0,

where the last equality comes from the fact that sin is bounded by 1 and so
|x sin

(
1
x

)
| ≤ |x|. Hence, we have f ′(0) = 0.

The function f ′ is not continuous at 0 (but is continuous everywhere else).
To see that, it suffices to notice that the limit

lim
x→0

f ′(x) = lim
x→0

2x sin

(
1

x

)
+ cos

(
1

x

)
does not exist. Indeed, since 2x sin

(
1
x

)
converges (to 0) when x → 0, if the

previous limit existed, then necessarily cos
(
1
x

)
would also converges when

x → 0, which is not the case.
In particular, we don’t have limx→0 f

′(x) = f ′(0) = 0, and thus f ′ is not
continuous at 0.

Exercise 2

Determine for which real numbers a and b the following function f defined
on R≥0

f(x) =

{√
x if 0 ≤ x ≤ 1,

ax2 + bx+ 1 if x > 1

is C1 on R>0 (meaning f is derivable on R>0 and the derivative f ′ is con-
tinuous). Draw a picture of the function.

Answer of exercise 2

Let’s start with the continuity. The only problem is for x = 1, where we
must ensure that

lim
x→1−

√
x = lim

x→1+
ax2 + bx+ 1,

1
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that is

1 = a+ b+ 1,

which gives the condition a = −b.
For the derivability, the only problem is also for x = 1, and we must

ensure that

lim
x→1

f(x)− f(1)

x− 1

exists. For that, we can compute the limit for x → 1− and for x → 1+ and
ask that they coincide. Because the derivative of

√
x and ax2 + bx + 1 are

derivable at 1, we have

lim
x→1−

f(x)− f(1)

x− 1
=

1

2
√
1
=

1

2

and

lim
x→1+

f(x)− f(1)

x− 1
= 2a+ b = a.

Hence we obtain the condition a = 1
2 and b = −1

2 . Moreover, with these

conditions f ′ is continuous, hence f is C1, because

lim
x→1−

f ′(x) =
1

2
= f ′(1) = lim

x→1+
f ′(x) = 2a+ b =

1

2
.

Exercise 3

Let f : I → R be a function C∞ and let x0 ∈ I. Suppose that there exists
a n > 1 such that f (n)(x0) ̸= 0, and let k be the smallest of such n.

Using the Taylor expansion of f , show the following:

(1) if k is even and f (k)(x0) > 0, then f is above its tangent line at x0,

(2) if k is even and f (k)(x0) < 0, then f is below its tangent line at x0,

(3) if k is odd and f (k)(x0) > 0, then f is below its tangent line for
x < x0 and above for x > x0,

(4) if k is odd and f (k)(x0) < 0, then f is above its tangent line for
x < x0 and below for x > x0.

(1) (2) (3) (4)

Answer of exercise 3

With the hypotheses, in a neighborhood of x0, we have

f(x) = f(x0) + f ′(x0)(x− x0) +
f (k)(x0)

k!
(x− x0)

k + r(x− x0),

where r is a function such that limx→x0

r(x−x0)
(x−x0)k

= 0. The tangent line of f

at x0 is the line of equation y = f(x0)+ f ′(x0)(x−x0), so we want to study
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the sign of

f(x)− (f(x0) + f ′(x0)(x− x0))

in a neighborhood of x0. Note that we have

lim
x→x0

k!
f(x)− (f(x0) + f ′(x0)(x− x0))

(x− x0)k
= lim

x→x0

(
f (k)(x0) + k!

r(x− x0)

(x− x0)k

)
= f (k)(x0)

[Recall that if we have a real function g : I → R such that if

lim
x→x0

g(x) = α ̸= 0,

then g(x) is of the sign of α in a neighborhood of x0 (prove this!).]

In particular, we obtain that, in a neighborhood of x0,

f(x)− (f(x0) + f ′(x0)(x− x0))

is of the sign of f (k)(x0)(x− x0)
k.

(1) If k is even and f (k)(x0) > 0, then f (k)(x0)(x−x0)
k is positive, hence

f is above its tangent line at x0,
(2) if k is even and f (k)(x0) < 0, then f (k)(x0)(x − x0)

k is negative,
hence f is below its tangent line at x0,

(3) if k is odd and f (k)(x0) > 0, then f (k)(x0)(x − x0)
k is negative for

x < x0 and positive for x > x0, hence f is below its tangent line for
x < x0 and above its tangent line for x > x0,

(4) if k is odd and f (k)(x0) < 0, then f (k)(x0)(x − x0)
k is positive for

x < x0 and negative for x > x0, hence f is above its tangent line for
x < x0 and below its tangent line for x > x0.

Exercise 4

Prove the following Taylor expansions at 0:

(1) ex = 1 + x+
x2

2
+ · · ·+ xn

n!
+ r(x),

(2) sin(x) = x− x3

3!
+

x5

5!
+ · · · (−1)p

x2p+1

(2p+ 1)!
+ r(x),

(3) cos(x) = 1− x2

2
+

x4

4!
+ · · ·+ (−1)p

x2p

(2p)!
+ r(x).

Answer of exercise 4

(1) Since the derivative of the exponential function is itself, we obtain

ex = e0 + e0x+ e0
x2

2
+ · · ·+ e0

xn

n!
+ r(x)

= 1 + x+
x2

2
+ · · ·+ xn

n!
+ r(x).
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(2) Recall that we have sin′(x) = cos(x), and thus sin′′(x) = − sin(x),

sin(3)(x) = − cos(x) and sin(4)(x) = sin(x). Using that sin(0) = 0
and cos(0) = 1, we obtain the desired formula

sin(x) = x− x3

3!
+

x5

5!
+ · · · (−1)p

x2p+1

(2p+ 1)!
+ r(x),

(3) This is similar to the previous one, using that cos′(x) = − sin(x),

cos′′(x) = − cos(x), cos(3)(x) = sin(x) and cos(4)(x) = cos(x).

cos(x) = 1− x2

2
+

x4

4!
+ · · ·+ (−1)p

x2p

(2p)!
+ r(x).

Exercise 5

Using Taylor expansions, compute the limit of

lim
x→0

1

x2
(ex − cosx− sinx) .

Answer of exercise 5

Let’s try by using the Taylor expension of degree 2 (this is guided by

the fact that we want to have a remainder r such that limx→0
r(x)
x2 = 0, to

compensate the 1/x2 in the limit we want to compute). By the previous
exercise, we have

ex = 1 + x+
x2

2
+ r1(x), sin(x) = x+ r2(x) cos(x) = 1− x2

2
+ r3(x),

with limx→0
ri(x)
x2 = 0 for i = 1, 2, 3. Thus we obtain,

ex − cosx− sinx = x2 + r(x),

where we set r(x) = r1(x) + r2(x) + r3(x). Hence,

1

x2
(ex − cosx− sinx) = 1 +

r(x)

x2
−→
x→0

1.
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* Exercise 1

Let f : Rm → Rn be given by

f(x) = Ax+ b, x ∈ Rm,

with A an n × m matrix and b ∈ Rn. Prove that f is differentiable for
x ∈ Rm and that f ′(x) = A.

Answer of exercise 1

We need to prove that

lim
h→0

∥f(x+ h)− f(x)−Ah∥
∥h∥

= 0.

But we have

f(x+ h)− f(x)−Ah = A(x+ h) + b−Ax− b−Ah

= Ax+Ah+ b−Ax− b−Ah

= 0.

** Exercise 2

Let f, g : Rm → Rn and α : Rm → R be differentiable functions. Prove
that the functions F1, F2 : Rm → Rn defined below are differentiable and
compute their derivatives

F1(x) = f(x) + g(x),

F2(x) = α(x)f(x).

Answer of exercise 2

• Let’s prove that DxF1 = Dxf + Dxg. This means that we have to
prove that

lim
h→0

∥F1(x+ h)− F1(x)−Dxf · h−Dxg · h∥
∥h∥

= 0.

We have

F1(x+ h)− F1(x) = f(x+ h) + g(x+ h)− f(x)− g(x),

and so

∥F1(x+ h)− F1(x)−Dxf · h−Dxg · h∥ = ∥f(x+ h)− f(x)−Dxf · h+ g(x+ h)− g(x)−Dxg · h∥
≤ ∥f(x+ h)− f(x)−Dxf · h∥

+ ∥g(x+ h)− g(x)−Dxg · h∥
1
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where we used the triangle inequality for the last inequality. From
this we deduce that

lim
h→0

∥F1(x+ h)− F1(x)−Dxf · h−Dxg · h∥
∥h∥

≤ lim
h→0

∥f(x+ h)− f(x)−Dxf · h∥
∥h∥

+ lim
h→0

∥g(x+ h)− g(x)−Dxg · h∥
∥h∥

= 0 + 0.

• This is question is slightly uneasy to answer to “by hand”. Let us
use the chain rule instead. Let φ : R× Rn → Rn+1 defined as

φ(λ, x1, · · · , xm) = (λx1, λx2, · · · , λxn).

This function is easily seen to be differentiable (prove it!), and the
Jacobi matrix is an n× (n+ 1) matrix given by

J(λ,x1,··· ,xn)φ =


x1 λ 0 · · · 0

0 x2 λ
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 xn λ

 .

Now, let h : Rm → R × Rn defined as h(x) = (α(x), f(x)). This
function is differentiable, as each components is differentiable by
hypothesis, and we have

J(x1,··· ,xm)h =


∂α
∂x1

· · · ∂α
∂xm

∂f1
∂x1

· · · ∂f1
∂xm

...
...

∂fn
∂x1

· · · ∂fn
∂xm


Finally, observe that F2 = φ◦h, which proves that F2 is differentiable
as a composition of differentiable function and the chain rule gives
us that

JxF2 = J(α(x),f(x))φ · Jxh

=


f1(x) α(x) 0 · · · 0

0 f2(x) α(x)
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 fn(x) α(x)




∂α
∂x1

· · · ∂α
∂xm

∂f1
∂x1

· · · ∂f1
∂xm

...
...

∂fn
∂x1

· · · ∂fn
∂xm



=

f1(x)Jxα+ Jxf1α(x)
· · ·

fn(x)Jxα+ Jxfnα(x)


* Exercise 3
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Determine the Jacobi matrix Jf (x, y) for the following functions f : R2 →
R2.

f(x, y) =

(
x2 − y2

2xy

)
f(x, y) =

(
ex cos y
ex sin y.

)
Answer of exercise 3

• We have

Jxf =

(
2x −2y
2y 2x

)
.

• We have

Jxf =

(
ex cos y −ex sin y
ex sin y ex cos y

)
.

*** Exercise 4

Consider the function

f(x, y) =

{
xy

x2+y2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0).

Compute the partial derivates of f . Is f differentiable in (0, 0)?

Answer of exercise 4

Let’s compute the partial derivatives of f . For (x, y) ̸= (0, 0), we have

∂f

∂x
(x, y) =

y − 2x

(x2 + y2)2
and

∂f

∂y
(x, y) =

x− 2y

(x2 + y2)2
.

For (x, y) = (0, 0), we must go back to the definition of derivative

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x
= lim

x→0

0− 0

x
= 0,

and
∂f

∂y
(0, 0) = lim

y→0

f(0, y)− f(0, 0)

y
= lim

y→0

0− 0

y
= 0.

The function f is not derivable at (0, 0) because it is not even continuous
at (0, 0). To see that, notice that

lim
z→0

f(z, z) = lim
z→0

z2

2z2
=

1

2
̸= 0.
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Exercise 1

For α > 0, let fα : R2 → R be defined by

fα(x, y) =

{
(x2 + y2)α sin

(
1

x2+y2

)
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Find (different values) for α such that

(1) the partial derivatives of fα exist in (0, 0);
(2) fα is differentiable at (0, 0);
(3) fα is C1 on R2.

Answer of exercise 1

(1) This means that we have to understand for which values of α the
following limits exist

lim
x→0

fα(x, 0)− fα(0, 0)

x
= lim

x→0
x2α−1 sin

(
1

x2

)
and

lim
y→0

fα(y, 0)− fα(0, 0)

y
= lim

y→0
y2α−1 sin

(
1

y2

)
.

That is the case if and only if α > 1
2 . Indeed, it is easy to see that

the condition is sufficient because the sin function is bounded and
if α > 1

2 , then limz→0 z
2α−1 = 0. To see that this condition is also

necessary, notice first that if α < 1
2 , then limz→0 z

2α−1 = +∞. Then,

if we take zn =
√

2
5nπ , we have sin

(
1
z2n

)
= 1 and limn→+∞ zn = 0.

Thus, we have

lim
n→+∞

z2α−1
n sin

(
1

z2n

)
= +∞,

which proves that the limit of z2α−1 sin
(

1
z2

)
does not exist in 0 (at

least the limit cannot be a real number, but actually it does not
diverge to +∞ either (prove this!)). Finally, in the case α = 1

2 , then

z2α−1 = 1 and sin
(

1
z2

)
does not converge when z → 0.

In conclusion, the partial derivatives at (0, 0) exist if and only if

α > 1
2 and in this case ∂f

∂x (0, 0) =
∂f
∂y (0, 0) = 0.

(2) We know that if f is differentiable, then the partial derivatives exist
(so we must have α > 1

2 by the previous question) and the Jacobian
of f at (0, 0) is given by

J(0,0)f =
(
∂f
∂x (0, 0)

∂f
∂y (0, 0)

)
=

(
0 0

)
.

1
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So, asking that f is differentiable at 0, means that we have to find
values of α (with at least α > 1

2) such that the following limit exists

lim
(x,y)→(0,0)

∣∣∣∣fα(x, y)− fα(0, 0)− J(0,0)f ·
(
x
y

)∣∣∣∣
∥(x, y)∥

= lim
(x,y)→(0,0)

|fα(x, y)|
∥(x, y)∥

= lim
(x,y)→(0,0)

(x2 + y2)α−
1
2

∣∣∣∣sin( 1

x2 + y2

)∣∣∣∣ .
Once again, this happens exactly if and only if α > 1

2 . To see

that, observe that lim(x,y)→(0,0)

√
x2 + y2 = 0, and so we are reduced

to study the existence of the limit when z → 0 of the function
z 7→ z2α−1

∣∣sin ( 1
z2

)∣∣, which we have already done in the previous
question.

(3) We know from the lecture that a function is C1 if and only if its
partial derivatives exist and are continuous. Outside of (0, 0), this
will always work for fα, so the only question is at (0, 0). Since
a C1 function is in particular derivable, we know from the previous
question that we need at least α > 1

2 . The only thing that we require
now is the continuity of the partial derivative at (0, 0), that is, we
need to have

lim
(x,y)→(0,0)

∂fα
∂x

(x, y) =
∂fα
∂x

(0, 0)

and

lim
(x,y)→(0,0)

∂fα
∂y

(x, y) =
∂fα
∂y

(0, 0).

Let’s treat the first one of these equalities, the other one being com-
pletely symetrical (as the role of x and y are symetrical in the defi-
nition of fα). For (x, y) ̸= (0, 0), we compute

∂fα
∂x

(x, y) = 2x(x2 + y2)α−2

(
α(x2 + y2) sin

(
1

x2 + y2

)
− cos

(
1

x2 + y2

))
,

and we have to find the value of α (with at least α > 1
2) such the

limit of the previous expression when (x, y) → (0, 0) exists and is 0

(because we know that we have ∂fα
∂x (0, 0) = 0).

This happens exactly if and only if α > 3
2 . To see that it is a

sufficient condition, notice that

|2x(x2 + y2)α−2| ≤ 2
√

x2 + y2(x2 + y2)α−2 = 2(x2 + y2)α−
3
2 .

Since lim(x,y)→(0,0)(x
2 + y2)α−

3
2 = 0, by the sandwhich lemma, we

also have lim(x,y)→(0,0) 2x(x
2+y2)α−2 = 0. Since cos is bounded this

proves that 2x(x2 + y2)α−2 cos
(

1
x2+y2

)
tends to 0 when (x, y) →

(0, 0). Moreover, the part with sin in the expression of ∂fα
∂x (x, y) also

tends to 0 because of the factor (x2 + y2) in front of it.
To see that the condition α > 3

2 is also necessary, let us suppose

that α ≤ 3
2 . Notice that the part with sin will still converges to 0
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(for any value of α), so we only need to show that when α ≤ 3
2 , the

limit

lim
(x,y)→(0,0)

2x(x2 + y2)α−2 cos

(
1

x2 + y2

)
does not exist. [Recall that if lim(x,y)→(a,b) f(x, y) exists, then we
have lim(x,y)→(a,b) f(x, y) = limx→a limy→b f(x, y) (prove this!)]. In
particular, suppose that the previous limit exist, then we can first
take the limit for y → 0 and observe that the limit

lim
x→0

2x(x2)α−2 cos

(
1

x2

)
= lim

x→0
2x2α−3 cos

(
1

x2

)
,

does not exist when α ≤ 3
2 . This proves, by contradiction, that

lim(x,y)→(0,0) 2x(x
2 + y2)α−2 cos

(
1

x2+y2

)
does not exist when α ≤ 3

2 .

Exercise 2

Let f : R2 → R be given by

f(x, y) =

{
xy(x2−y2)
x2+y2

if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0).

Is f a C1-function on R2? Is f a C2-function on R2? Compute ∂2f
∂x∂y (0, 0)

and ∂2f
∂y∂x(0, 0).

Answer of exercise 2

We know from the lecture that a function is C1 if and only if the partial
derivatives exist and are continuous. Outside of (0, 0), it is trivially the case,
and we only need to see what happens at (0, 0). Let us first prove that the
partial derivatives exist at (0, 0). Observe that

lim
x→0

f(x, 0)− f(0, 0)

x
= lim

x→0
0 = 0.

Hence, ∂f
∂x (0, 0) = 0, and similarly for the other partial derivative. Let us

now see that the partial derivatives are continuous, for (x, y) ̸= (0, 0), we
compute that

∂f

∂x
(x, y) =

y
[
(3x2 − y2)(x2 + y2)− 2x2(x2 − y2)

]
(x2 + y2)2

.

To see that the limit of this function is 0 when (x, y) → (0, 0), observe that∣∣y [(3x2 − y2)(x2 + y2)− 2x2(x2 − y2)
]∣∣

(x2 + y2)2
≤

|y|
[
(3x2 + y2)(x2 + y2) + 2x2(x2 + y2)

]
(x2 + y2)2

≤ |y|(5x2 + y2)

(x2 + y2)

≤ |y|5(x2 + y2)

(x2 + y2)
= 5|y|.
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Thus, by the sandwhich lemma, lim(x,y)→(0,0)
∂f
∂x (x, y) = 0 = ∂f

∂x (0, 0). For
the other partial derivative, observe that f(x, y) = −f(y, x), and thus

∂f

∂y
(x, y) = −∂f

∂x
(y, x),

which proves that this partial derivative is also continuous. Hence, f is C1.

Let us prove that f not C2. In order to do that, let’s compute ∂2f
∂y∂x(0, 0),

which is the following limit

lim
y→0

∂f
∂x (0, y)−

∂f
∂x (0, 0)

y
=

−y5

y5
= −1,

and then let’s compute ∂2f
∂x∂y (0, 0)

lim
x→0

∂f
∂y (x, 0)−

∂f
∂y (0, 0)

x
= lim

x→0

−∂f
∂x (0, x)

x

= −−x5

x5
= 1.

Therefore, f cannot be C2, otherwise we would have ∂2f
∂y∂x(0, 0) =

∂2f
∂x∂y (0, 0).
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** Exercise 1

Use the chain rule to prove that the sum of two differentiable functions
is again differentiable, and compute the derivative.

Answer of exercise 1

Let f, g : Rm → Rn be two differentiable functions. We would like to show
that the function f + g : Rm → Rn defined as

(f + g)(x) = f(x) + g(x)

is differentiable and compute its derivative. For that, consider the function

S : Rn × Rn → Rn

(x, y) 7→ (x+ y).

Notice that S is a linear map Rn × Rn → Rn, whose matrix is given by

M(S) =

1 0 1 0
. . .

. . .

0 1 0 1.


In particular, S is differentiable (cf. Exercise 1 Week 12) and the Jacobi
matrix is given by M(S).

Notice now that f + g = S ◦ (f, g), where (f, g) is the function

(f, g) : Rm → Rn × Rn

x 7→ (f(x), g(x)),

which is differentiable (why?). Hence, f + g is differentiable by composition
of differentiable functions. To compute the derivate (or rather the Jacobi
matrix) of f + g, notice that the Jacobi matrix of (f, g) is given by

Jx(f, g) =

(
Jxf
Jxg

)
,

that is, is obtained by stacking on top of each other the Jacobi matrices of
f and g. Hence by the chain rule, we obtain

Jx(f + g) = M(S)Jx(f, g) = Jxf + Jxg,

or,
Dx(f + g) = Dxf +Dxg.

** Exercise 2

Let E ⊂ Rn be an open set, and f, g : E → R be two differentiable
functions. Use the chain rule to show that the product fg is differentiable

and compute the partial derivative ∂(fg)
∂xj

. Give a formula for the derivative

Dx(fg) for all x ∈ E.

1
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Answer of exercise 2

The idea is the same as for the previous exercise. Let µ : R × R → R be
defined as

µ(a, b) = a× b.

This function is differentiable (this can be seen, for example, by the fact
that its partial derivatives are C∞). Moreover, the Jacobi matrix of µ is
given by

J(a,b)µ =
(
b a

)
.

Notice now that we have fg = µ ◦ (f, g), where (f, g) is the function

(f, g) : E → R× R
x 7→ (f(x), g(x)).

This function is differentiable (why?) and the Jacobi matrix is given by

Jx(f, g) =

(
Jxf
Jxg

)
.

In particular, fg is differentiable and we have

Jxfg = J(f(x),g(x))µ J(x)(f, g)

= g(x)J(x)f + f(x)J(x)g.

This gives
Dx(fg) = g(x)Dxf + f(x)Dxg

and
∂(fg)

∂xj
(x) = g(x)

∂f

∂xj
(x) + f(x)

∂g

∂xj
(x)

* Exercise 3

Let U = {(x, y) ∈ R2|x > 0, y > 0}, V = {(x, y) ∈ R2|y > 0}, and
φ : U → V given by φ(x, y) = (x2 − y2, 2xy). Prove that φ is a diffeomor-
phism.

Answer of exercise 3

An easy computation gives us that the Jacobi matrix of φ is given by

J(x,y)φ =

(
2x −2y
2y 2x

)
.

Its determinant is then given by

det(J(x,y)φ) = 2x2 + 2y2,

which is always > 0 on U . In particular J(x,y) is invertible on U and by
the inverse function theorem, we know that φ is a local diffeomorphism. In
order to prove that it is a diffeomorphism φ : U → V , it suffices to prove
that φ(U) = V and that it is injective.

Notice first that we have φ(U) ⊆ V because if x > 0 and y > 0, then
2xy > 0. For the converse, let b > 0. We need to find x > 0 and y > 0 such
that 2xy = b, which is trivial (for example x = 1 and y = b). Hence we have
φ(U) = V .

For the injectivity, let x, x′, y, y′ > 0 such that

x2 − y2 = x′2 − y′2 and 2xy = 2x′y′.
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From the second equation, we deduce that x = x′ y
′

y . Injecting in the first

equation, we easily get

x′2

y2
(y′2 − y2) = y2 − y′2.

Since x′2

y2
> 0, we necessarily have y2 = y′2. Since we suppose y, y′ > 0, we

then have y = y′. The equality x = x′ follows at once from the condition
xy = x′y′.

All in all, this proves that φ is injective and since it is a local diffeomor-
phism, it is thus a diffeomorphism onto its image φ(U) = V .

** Exercise 4

Let f : R2 → R2, given by f(x, y) = (ex cos y, ex sin y).

(1) What is the range of f?
(2) Show that the Jacobi matrix of f is invertible at any point of R2.

Thus, by the inverse function theorem, every point of R2 has a neigh-
borhood in which f is one-to-one. Is f one-to-one on R2?

(3) Let a = (0, π/3), b = f(a) and let g be the inverse of f , defined
in a neighborhood of b, such that g(b) = a (whose existence follows
from the inverse function theorem). Find an explicit formula for g,
compute Daf and Dbg and verify that

Db(g) = Da(f)
−1.

Answer of exercise 4

(1) Note that (ex cos y, ex sin y) ̸= (0, 0) for any (x, y) ∈ R2 (because
this would force both sin y = 0 and cos y = 0 which is impossible).
Conversely let (a, b) ̸= (0, 0) a point of R2. Let r be the distance

from (0, 0) to (a, b) (i.e. r =
√
a2 + b2) and θ be a value of the

angle between the x axis and the half-line determine by (0, 0) and
(a, b) (which is well defined since (a, b) ̸= (0, 0)). Then we have

eln(r) cos θ = a and eln(r) sin θ = y. This proves that the range of f
is R2 − {0}.

(2) The Jacobi matrix of f is given by

J(x,y)f =

(
cos y −ex sin y
sin y ex cos y.

)
We have det(J(x,y)f) = 2ex > 0, hence J(x,y)f is invertible for every

point of R2. We deduce by the inverse function theorem that f is
one-to-one locally around any point of R2. However, f is not one-
to-one on R2, for f(x, y) = f(x, y + 2kπ) for any k ∈ Z.

(3) We have g(x, y) = (ln(
√

x2 + y2), arctan
( y
x

)
), where arctan is the

inverse of the function tan: (−π
2 ,

π
2 ) → R. We compute

Jaf =

(
cos

(
π
3

)
− sin

(
π
3

)
sin

(
π
3

)
cos

(
π
3

) )
,
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b = (cos
(
π
3

)
, sin

(
π
3

)
), and

Jbg =

(
cos

(
π
3

)
sin

(
π
3

)
− sin

(
π
3

)
cos

(
π
3

)) .

A straightforward verification gives that

Jaf · Jbg = Jbg · Jaf =

(
1 0
0 1

)
,

which shows exactly that Jbg is the inverse of Jaf .

** Exercise 5

Let f : R → R defined by

f(t) =

{
t+ 2t2 sin

(
1
t

)
if t ̸= 0,

0 if t = 0.

Show that f is derivable and f ′(0) = 1, but that f is not one-to-one in
any neighborhood of 0. What hypothesis of the inverse function theorem is
missing?

Answer of exercise 5

We easily compute that

lim
t→0

t+ 2t2 sin
(
1
t

)
t

= lim
t→0

1 + 2t sin

(
1

t

)
= 1.

Hence, f is derivable at 0 (and also elsewhere trivially) and f ′(0) = 1.
Let us show that for any δ > 0, there exists t ∈ (−δ, δ) such that t ̸= 0

and f(t) = 0, which shows, in particular that f is not one-to-one in any
neighborhood of 0. Consider the equation

t+ 2t2 sin

(
1

t

)
= 0

t(1 + 2t sin

(
1

t

)
) = 0.

Since we want a solution different than 0, we must solve the equation

1 + 2t sin

(
1

t

)
= 0,

which is equivalent (assuming t ̸= 0) to

sin

(
1

t

)
= − 1

2t
.

This equation has an infinite number of solutions, at least one of which is
0 < t < δ (why?), which proves our claim.

The hypothesis missing to apply the inverse function theorem is that f
be C1. Indeed, outside of 0, we have

f ′(t) = 1 + 4t sin

(
1

t

)
− 2 cos

(
1

t

)
,

and because of the cos term, the limit of f ′(t) when t → 0 does not exist.
In particular f ′ is not continuous at 0 and hence f is not C1.


