
ADVANCED MATHEMATICS 2023-2024

LECTURE – WEEK 1

LÉONARD GUETTA

The reference for this lecture is the first chapter of [Rud76].

1. Introduction

We denote by N the set of natural numbers {0, 1, 2, ...}, Z the set of
integers {...,−2,−1, 0, 1, 2, ...} and finally Q the set of rational numbers.

As a system of numbers, Q has a lot of satisfactory properties, for example
it is and ordered field (a notion we’ll define later) and dense. The latter
means that for two rational numbers p < q, there exists a rational number
r such that p < r < q. Yet, certain numbers seem to be “missing”.

Proposition 1.1. There is no rational number x such that x2 = 2.

Proof. Exercise. □

In other words, 2 does not have a square root in Q. However, we can
approximate it “as close as possible” by rational numbers. Meaning for
example that there is sequence of rational numbers

1.4, 1.41, 1.412, 1.4124, ...

which “converges to
√
2”, even though one would need to define precisely

what this means.
Intuitively speaking, Q have gaps and lacks the property of being a “con-

tinuum”. This defect is corrected by introducing real numbers.

2. Ordered sets

Definition 2.1. An ordered set is a set S equipped with a binary relation
≤ such that for any elements x, y, z of S, the following axioms are satisfied:

• at least one of the following

x ≤ y or y ≤ x

holds,
• if x ≤ y and y ≤ x, then x = y,
• if x ≤ y and y ≤ z, then x ≤ z.

Remark 2.2. As usual, we write x < y to say that x ≤ y and x ̸= y. It
follows that for any elements x and y in an ordered set, one, and exactly
one of the following is true

x < y or x = y or x > y.

Example 2.3. The sets N, Z andQ, equipped with their usual order relation
are ordered sets.

The sets of words in English, equipped with the lexicographical order (the
“dictionnary” order) is an ordered set.
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Definition 2.4. Let (S,≤) be an ordered set and A ⊂ S a subset of S. An
element x ∈ S is an upper bound of A if for every element a of A, we have

a ≤ x.

If such an upper bound exists, we say that A is bounded above.
An upper bound x of A is a least upper bound (or supremum) if for any

other upper bound x′ of A, we have

x ≤ x′.

Proposition 2.5. If a subset A ⊆ S of an ordered set admits a least upper
bound, then it is unique.

Proof. Let x and x′ be least upper bounds of A ⊂ S. Because x is a least
upper bound, we have

x ≤ x′,

and because x′ is a least upper bound, we have

x′ ≤ x.

It follows then from the axioms of ordered set that x = x′. □

As a consequence of the previous proposition, we can speak of the least
upper bound of A ⊆ S (if it exists). We use the notation supA for the least
upper bound.

Remark 2.6. Even if it exists, the least upper bound of A ⊆ S is not
necessarily an element of A. For example, if S = Q with the usual order
and A = {x ∈ Q |x < 0}, then supA = 0, but 0 /∈ A.

Definition 2.7. We say that an ordered set (S,≤) has the least upper bound
property if every non-empty, bounded above, subset A of S has a least
upper bound.

Proposition 2.8. The ordered set Q does not have the least upper bound
property.

Proof. Consider the the subset

A = {x ∈ Q |x2 < 2}
of Q. This set is not empty (for example, 0 ∈ Q), it is bounded above (for
example, by 2). Let us prove by contradiction that it does not have a least
upper bound.

Suppose that supA exists, which we denote p for short. Let us prove that
this necessarily implies that p2 = 2, which would be a contradiction (since
we already saw that such a rational number cannot exist). Let q be the
rational number

q = p− p2 − 2

p+ 2
=

2p+ 2

p+ 2
.

Then

q2 = 2 +
2(p2 − 2)

(p+ 2)2
.

If p2 < 2, then q > p and q2 < 2, which contradicts the fact that p is an
upper bound of A. If p2 > 2, then 0 < q < p and q2 > 2, which contradicts
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the fact that p is the least upper bound of A. Hence, we can deduce that
p2 = 2. □

Remark 2.9. Note that by reversing all inequalities, one define the notion
of lower bound and greatest lower bound, as well as the greatest lower bound
property. (Exercise). One has then the following result.

Proposition 2.10. An ordered set has the least upper bound property if and
only if it has the greatest upper bound property.

Proof. Exercise. □

3. Real numbers

In order to state the existence theorem of the real numbers, we need to
introduce the concepts of field and ordered field.

Definition 3.1. A field is a set F equipped with two (binary) operations
+ and ·, and two distinguished element 0 ∈ F and 1 ∈ F , such that for any
element x, y, z in F , the following axioms are satisfied:

• (x+ y) + z = x+ (y + z),
• x+ y = y + x,
• (x · y) · z = x · (y · z),
• x · y = y · x,
• x · (y + z) = x · y + x · z,
• 0 ̸= 1,
• x+ 0 = 0 + x = x,
• 1 · x = x · 1 = x,
• 0 · x = x · 0 = 0,
• there exists an element −1 of F such that

1 + (−1) = 0,

• if x ̸= 0, there exists an element 1
x in F such that

x · 1
x
= 1.

Remark 3.2. In a field, we usually write xy, x
y , −x, x− y instead of x · y,

x · 1
y , (−1) · x, x+ (−y).

Even though this is not the main focus of this course, using the previous
field axioms, one can prove a lot of the usual algebraic properties of Q holds
in any field (see for example 1.12-1.18 in [Rud76]).

Definition 3.3. An ordered field is a field F , equipped with a binary relation
≤ that makes it an ordered set, and such that the following additional axioms
are satisfied:

• if x ≤ y, then x+ z ≤ y + z,
• if 0 ≤ x and 0 ≤ y, then 0 ≤ x · y.

Elements x such that 0 < x (resp. x < 0) are called positive (resp. nega-
tive).

We can now state the main result of this lecture.
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Theorem 3.4. There exists a unique ordered field, which we denote R,
which contains Q as a subfield, and that satisfies the least upper bound prop-
erty.

Proof. Admitted. See appendix of first chapter of [Rud76]. □

This theorem is fundamental, and is the basis of all of analysis. In fact,
we do not really need to know an explicit construction of the real numbers
to do analysis, and can simply work abstractly with the real numbers, only
using that it satisfies the previous theorem. In other words, the previous
theorem could be considered as an axiom of real numbers.

Proposition 3.5. For every real number x > 0 and every integer n > 0,
there is one and only one real number y such that yn = x.

Proof. See Theorem 1.21 of [Rud76]. □

In particular, we deduce from the previous proposition that there exists

a real number
√
2 such that

√
2
2
= 2.

We end this lecture with two useful properties of real numbers.

Proposition 3.6. Let x, y be two real numbers.

(1) If x > 0, there exists a natural number n ∈ N such that y < nx,
(2) If x < y, there exists a rational number r such that x < r < y.

We refer to the first property by saying that R is archimedean and to the
second property by saying that Q is dense in R.

Proof. See Theorem 1.20 of [Rud76]. □

References

[Rud76] Walter Rudin. Principles of mathematical analysis, volume 3. McGraw-hill New
York, 1976.
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The reference for this lecture is the third chapter of [Rud76], from 3.1. to
3.20., as well as Marta Pieropan’s lecture notes.

1. Convergent real sequences

Recall that a sequence (un)n≥n0 of real numbers consists of the data of
a a list of real numbers un0 , un0+1, un0+2, · · · , indexed by natural integer
n ≥ n0. Usually, we will have n0 = 0 or n0 = 1. Often we shall consider
that n0 is implicit and just write (un).

Definition 1.1. Let x and y be two real numbers. The distance between x
and y, denoted by d(x, y), is defined as

d(x, y) = |y − x|.

Proposition 1.2. Let x, y, z be real numbers. The following properties
holds:

• d(x, y) = d(y, x), (Symmetry)
• d(x, y) = 0 if and only if x = y, (Separation)
• d(x, y) + d(y, z) ≤ d(x, z). (Triangle inequality)

Proof. Exercise. □

Definition 1.3. Let (un) be a sequence in R and ℓ a real number. We say
that the sequence (un) converges to ℓ if the following property holds:

For every ϵ > 0, there exists an N ∈ N, such that if n ≥ N then d(un, ℓ) < ϵ.

Intuitively, this means that un gets as close as we want to ℓ for n large
enough.

We say that a sequence (un) is convergent or that its limit exists if there
exists an ℓ ∈ R such that (un) converges to ℓ, in which case we use the
notation

lim
n→+∞

un = ℓ.

When such a limit does not exist, we say that the sequence is divergent.
As the following result shows, when it exists, the limit of a sequence is

unique, hence we can speak of “the” limit of a sequence.

Proposition 1.4. Let (un) be a sequence in R, and ℓ and ℓ′ two real num-
bers. If (un) converges to ℓ and to ℓ′, then ℓ = ℓ′.

In order to prove this proposition, we need the following lemma.
1
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Lemma 1.5. Let x ≥ 0 be a real number. If for every real number ϵ > 0,
we have

0 ≤ x < ϵ,

then x = 0.

Proof. The hypothesis means that x is a lower bound of R>0 = {ϵ > 0 | ϵ ∈
R}. In particular x ≤ 0, because 0 is the greatest lower bound of this subset.
Since x ≥ 0 by hypothesis, we deduce that x = 0. □

Proof of Proposition 1.4. Let ϵ > 0. Since (un) converges to ℓ, there exists
N ∈ N such that

d(un, ℓ) < ϵ/2

for all n ≥ N . Similarly, since (un) converges to ℓ′, there exists N ′ ∈ N such
that

d(un, ℓ
′) < ϵ/2

for all n ≥ N ′. In particular, for all n ≥ max(N,N ′) we have

d(un, ℓ) + d(un, ℓ
′) < ϵ/2 + ϵ/2 = ϵ.

By symmetry and triangle inequality, we can deduce that for any n ≥
max(N,N ′), we have

d(ℓ, ℓ′) < d(ℓ, un) + d(un, ℓ) < ϵ.

Hence, we have proved that for any ϵ > 0, we have

0 ≤ d(ℓ, ℓ′) < ϵ,

from which we conclude that d(ℓ, ℓ′) = 0 by Lemma 1.5, and it follows by
the separation property of d that ℓ = ℓ′. □

We have the following useful properties of sequences of real numbers.

Proposition 1.6. Let (un) and (vn) be convergent sequences in R. The
following properties hold:

(1) if un ≤ vn for all n, then

lim
n→∞

un ≤ lim
n→+∞

vn,

(2) the sequence (un + vn) is convergent and we have

lim
n→+∞

(un + vn) = lim
n→+∞

un + lim
n→+∞

vn,

(3) for c is a real number, then the sequence (c · un) is convergent and
we have

lim
n→+∞

c · un = c · lim
n→+∞

un

(4) the sequence (un · vn) is convergent and we have

lim
n→+∞

(un · vn) = lim
n→+∞

un · lim
n→+∞

vn,

(5) if vn ̸= 0 for all n and limn→+∞ vn ̸= 0, then the sequence (un
vn
) is

convergent and

lim
n→+∞

un
vn

=
limn→+∞ un
limn→+∞ vn

Proof. Theorem 3.3 of [Rud76]. □
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Proposition 1.7 (“Sandwich” lemma). Let (un), (vn) and (wn) be real se-
quences such that

un ≤ vn ≤ wn

for all n. If un and wn both converges to the same limit ℓ, then vn also
converges to ℓ.

Proof. Let ϵ > 0. We know there exists and N such that for all n ≥ N , we
have

ℓ− ϵ < un < ℓ+ ϵ,

and we know there exists an N ′ such that for all n ≤ N , we have

ℓ− ϵ ≤ wn ≤ ℓ+ ϵ.

In particular, for all n ≥ max(N,N ′), we have

ℓ− ϵ < un ≤ vn ≤ wn < ℓ+ ϵ,

which proves, by definition, that (vn) converges to ℓ. □

2. Criteria for convergence of real sequences

Definition 2.1. Let (un) be a sequence of real numbers. We say that (un)
is:

• increasing if for all n, we have un ≤ un+1,
• bounded above if there exists an α ∈ R, such that un ≤ α for all n,
• decreasing if for all n, we have un ≥ un+1,
• bounded below if there exists an α ∈ R, such that un ≥ α for all n.

We say that a sequence is bounded if it is both bounded above and bounded
below.

Lemma 2.2. A convergent sequence is bounded.

Proof. Exercise. □

Theorem 2.3. Let (un) be a sequence of real numbers. If (un) is increasing
and bounded above,then it is convergent. If (un) is decreasing and bounded
below, then it is convergent.

Proof. We only prove the first statement and leave the second one as an
exercise.

Consider the following subset of R

A = {un|n ≥ n0}.

It is non-empty (because it contains all the values of un) and it is bounded
above by hypothesis. In particular, since R has the least upper bound prop-
erty, supA exists. Let us show that (un) converges to supA.

Let ϵ > 0. Because supA is the least upper bound, then supA− ϵ is not
an upper bound of A. This means that there exists an N ∈ N such that

supA− ϵ < uN ≤ supA.

Since un is increasing, for all n ≥ N , we have

supA− ϵ < un,



4 L. GUETTA

and since supA is an upper bound of A, for all n ≥ N , we have

supA− ϵ < un ≤ supA,

and, a fortiori, we have

supA− ϵ < un < supA+ ϵ,

which means exactly that

|un − supA| < ϵ. □

Definition 2.4. Let (un) be a bounded sequence of real numbers. Because
this sequence is bounded, we can define sequences (vn) and (wn) as

vn = sup{uk | k ≥ n}
and

wn = inf{uk | k ≥ n}
The sequence (vn) is decreasing and bounded below (why?), hence has a
limit by Theorem 2.3. Dually, the sequence (wn) is increasing and bounded
above, hence has a limit. We then define

lim sup
n→+∞

un := lim
n→∞

vn

and
lim inf
n→+∞

un := lim
n→∞

wn.

Proposition 2.5. Let (un) be a sequence of real numbers. Then (un) is
convergent if and only if (un) is bounded and we have

lim sup
n→∞

un = lim inf
n→∞

un,

in which case the limit of (un) is this common value.

Proof. Let’s begin with the “if” part. Suppose that (un) is bounded, hence
we can define the sequences vn = sup{uk |k ≥ n} and wn = inf{uk |k ≥ n}
as before.

Notice now that for all n we have

wn ≤ un ≤ vn,

and the conclusion follows from the Sandwich Lemma (Proposition 1.7).
Now, the “only if” part. Let (un) be a convergent sequence of real num-

bers and let ℓ be its limit. We have already seen (Lemma 2.2) that a con-
vergent sequence is bounded. Let’s prove that

lim sup
n→∞

un = ℓ = lim inf
n→∞

un.

Let ϵ > 0. There exists an N ∈ N such that for all n ≥ N , we have
d(un, ℓ) < ϵ, which means exactly that

ℓ− ϵ < un < ℓ+ ϵ,

which implies clearly that

ℓ− ϵ ≤ inf{uk |k ≥ n} < ℓ+ ϵ

and
ℓ− ϵ < sup{uk |k ≥ n} ≤ ℓ+ ϵ,

which concludes the proof. □
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3. Divergence to ∞

It is sometimes useful to consider sequences that diverges to ∞.

Definition 3.1. A real sequence (un) diverges to +∞ if for all M ∈ R, there
exists an N ∈ N, such that for all n ≥ N , we have un ≥ M . We then write

lim
n→+∞

un = +∞.

Similarly, (un) is said to diverges to −∞ if for all M ∈ R, there exists an
N ∈ N, such that for all n ≥ N , we have un ≤ M . We then write

lim
n→+∞

un = −∞.

Proposition 3.2. An unbounded increasing real sequence diverges to +∞.
An unbounded decreasing real sequence diverges to −∞.

Proof. Exercise. □

In particular, given a real sequence (un), the limits

lim sup
n→+∞

un and lim inf
n→+∞

un

are always defined (with possible values +/ − ∞ if the sequence is un-
bounded), and we obtain the slightly improved version of Proposition 2.5.

Proposition 3.3. Let (un) be a real sequence. Then limn→+∞ un exists
(with possible value +/−∞) if and only if

lim sup
n→+∞

un = lim inf
n→+∞

un,

in which case limn→+∞ un is this common value.
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Recall that given a (real) sequence (an)n≥n0 , we denote by
∑

an the
sequence (sk)k≥n0 of its partial sum:

sk =
k∑

n=n0

an

We say that the series
∑

an converges (resp. diverges) if this sequence con-
verges (resp. diverges). When it converges to α ∈ R, we use the notation

+∞∑
n=n0

an = α

The following result is left as an exercise.

Proposition 0.1. If the series
∑

an is convergent, then limn→+∞ an = 0.

1. Series of non-negative terms

Theorem 1.1. A series of non-negative terms converges if and only if the
sequence of partial sums is bounded.

Proof. The sequence of partial sum is increasing (because the terms are
non-negative), hence it is convergent if and only if it is bounded. □

Proposition 1.2 (Comparison criterion). Let Σan, Σbn series of non-negative
terms such that

an ≤ bn

for all n ≥ N0, with N0 some fixed integer.

(1) If
∑

bn converges, then so does
∑

an.
(2) If

∑
an diverges, then so does

∑
bn.

Proof. Exercise. □

Our first example of series is the geometric one.

Proposition 1.3. Consider the series
∑

xn where x is a non-negative real
number.

(1) If 0 ≤ x < 1, then
∑

xn converges and we have

+∞∑
n=0

xn =
1

1− x

(2) If x ≥ 1, then
∑

xn diverges.
1
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Proof. If x ̸= 1, then we have

n∑
k=1

xn =
1− xn+1

1− x
.

If x < 1, this sequence converges to 1
1−x and if x > 1, this sequence diverges.

If x = 1, the sequence 1 + 1 + 1 + 1 + · · · diverges. □

The following example is also very important.

Proposition 1.4. Consider the series
∑ 1

np .

(1) If p > 1, the series converges.
(2) If p ≤ 1, the series diverges.

In order to prove this, we need the following lemma.

Lemma 1.5. Let a1 ≥ a2 ≥ a3 ≥ · · · 0 be a non-negative decreasing se-
quence. The series

∑
an converges if and only if the series

+∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · ·

converges.

Proof. Let

sn = a1 + a2 + a3 + · · ·+ an

and

tk = a1 + 2a2 + 4a4 + · · ·+ 2ka2k

be the sequences of partial sums.
For n < 2k, we have

sn ≤ a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + 4a4 + · · ·+ 2ka2k

= tk,

and for n > 2k,

sn ≥ a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + · · ·+ (a2k−1+1 + · · · a2k)

≥ a1/2 + a2 + 2a4 + 4a8 + · · ·+ 2k−1a2k

= tk/2.

It follows that sn is bounded (above) if and only if tk is bounded (above). □

Proof of Proposition 1.4. If p ≤ 0, then the divergence follows from Propo-
sition 0.1. If p > 0, we can use the previous lemma, and we consider the
following series

+∞∑
k=0

2k · 1

2kp
=

+∞∑
k=0

2(1−k)p.

Using the comparison with the geometric series (Proposition 1.3), we see
that this series is convergent if and only if 21−p < 1, which means exactly
that 1− p < 0. □
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2. Convergence criteria for series

Definition 2.1. We say that series
∑

an converges absolutely if the series∑
|an| converges.

Proposition 2.2. If
∑

an converges absolutely, then it converges.

Proof. Notice that we have

0 ≤ an + |an| ≤ 2|an|.
By hypothesis

∑
|an| converges, hence so does

∑
2|an|. By the comparision

criterion, we deduce that
∑

(an + |an|) converges. Finally, notice that

(an + |an|)− |an| = an,

hence we deduce that
∑

an converges. □

Remark 2.3. The converse of this proposition is false. For example, the

series
∑ (−1)n

n converges, but the series
∑ 1

n diverges.

Theorem 2.4 (Root test). Let
∑

an be a series and let α = lim supn→+∞
n
√

|an|.
(a) If α < 1, the series converges.
(b) If α > 1, the series diverges.
(c) If α = 1, we cannot conclude.

In order to prove this theorem, we need the following lemma.

Lemma 2.5. Let (an) be a bounded real sequence and α = lim supn→+∞ an.
For every β > α, there exists an N ∈ N such that an < β for all n ≥ N .

Proof. Exercise. □

Proof of the theorem. If α < 1, we can choose α < β < 1 and the previous
lemme shows that there exists an N ∈ N such that

n
√
|an| < β.

This means that if n ≥ N , then

|an| < βn.

Since 0 < β < 1, (a) follows from the comparison criterion (Proposition 1.2)
and the convergence of the geometric series (Proposition 1.3). □

Theorem 2.6 (Ratio test). Let
∑

an be a series.

(a) If lim supn→+∞

∣∣∣an+1

an

∣∣∣ < 1, then the series converges.

(b) If
∣∣∣an+1

an

∣∣∣ ≥ 1, for all n ≥ N0 with N0 some fixed integer, then the

series diverges.
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1. Cauchy sequences in R

Definition 1.1. Let (an) be a real sequence. We say that it is a Cauchy
sequence if for all ϵ > 0, there exists an N ≥ 0 such that if n ≥ N and
m ≥ N , then d(an, am) < ϵ.

Theorem 1.2. A sequence in R is convergent if and only if it is a Cauchy
sequence.

Proof. Let us start with the “only if” part. Suppose that (an) is a sequence
converging to ℓ ∈ R and let ϵ > 0. There exists an N ∈ N such that if
n ≥ N , then d(an, ℓ) < ϵ/2. Using triangle inequality and symmetry, we
deduce that

d(an, am) ≤ d(an, ℓ) + d(ℓ, am) < ϵ/2 + ϵ/2 = ϵ,

for all n,m ≥ N .
Let us now prove the “if” part. Suppose that (an) is a Cauchy sequence

and let ϵ > 0. There exists an N ∈ N such that if n,m ≥ N , then

d(an, am) < ϵ.

In particular, if we choose m = N , for all n ≥ N , we have

aN − ϵ < an < aN + ϵ.

Hence, we have

sup{an |n ≥ N} ≤ aN + ϵ

from which we deduce that

lim sup
n→+∞

an ≤ aN + ϵ

(because the sequence vn = sup{ak | k ≥ n} is decreasing.) Similarly, we
have

inf{an |n ≥ N} ≥ aN − ϵ,

from which we deduce that

lim inf
n→+∞

an ≥ aN − ϵ.

Recall now that

lim inf
n→+∞

an ≤ lim sup
n→+∞

an,

and in particular, we deduce that

0 ≤ lim sup
n→+∞

an − lim inf
n→+∞

an ≤ 2ϵ.

1
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Since this is true for all ϵ > 0, this proves that

lim sup
n→+∞

an = lim inf
n→+∞

an,

which proves that (an) is convergent. □

Remark 1.3. In the “if” part, we have implicitly used that lim sup an and
lim inf an are real numbers (and not ∞) in order to be able to substract one
to the other (+∞−∞ is not well-defined!). This is justified by the fact that
every Cauchy sequence is bounded (Exercise).

We can use this theorem to give a criterion for convergence of series.

Proposition 1.4. A real series
∑

an is convergent if and only if for all
ϵ > 0, there exists an N ∈ N such that if n ≥ m ≥ N , then∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ < ϵ.

2. Metric spaces

Definition 2.1. A metric space consists of a pair (X, d), where X is a set,
and d is a function

d : X ×X → R≥0,

such that for all x, y, z ∈ X:

(1) d(x, y) = d(y, x),
(2) d(x, y) = 0 if and only if x = y,
(3) d(x, z) ≤ d(x, y) + d(y, z).

A function that satisfies these three axioms is called a metric or a distance.

Example 2.2. The set of real numbers R equipped with the usual distance
function

d : R× R → R≥0

(x, y) 7→ |y − x|
is a metric space.

Example 2.3. If (X, d) is a metric space and A ⊂ X is a subset of X, then
(A, d) is a metric space on its own right (note that we abused notation here
and wrote d for the restriction of d to A). For example, Q equipped with
the distance (x, y) 7→ |y − x| is a metric space.

Our main examples of metric spaces are euclidian spaces.

Definition 2.4. Let k ≥ 0. We denote by Rk the set of ordered k-uples

x = (x1, x2, · · · , xk)
where each xi is a real number. Elements of Rk are usually called points (or
sometimes vectors) and the xi’s are called the coordinates. If x and y are
points in Rk and α is a real number, we define

x+ y = (x1 + y1, · · · , xk + yk)

and
α · x = (αx1, · · · , αxk).
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These operations satisfy several axioms (commutativity and associativity of
+, associativity of · and distributivity of · over +) that makes Rk a real
vector space. Moreover, we also have the inner product (or scalar product)
of x and x as

(x|y) =
k∑

i=1

xiyi.

and the (euclidian) norm of x as

∥x∥ =
√

(x|x) =

√√√√ k∑
i=1

x2i .

Lemma 2.5. Let x,y be points in Rk and α ∈ R. Then

(1) ∥x∥ ≥ 0,
(2) ∥x∥ = 0 if and only if x = 0,
(3) ∥α · x∥ = |α| ∥x∥,
(4) |(x|y)| ≤ ∥x∥ ∥y∥,
(5) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proof. The first three properties are obvious. For the fourth one, let t be a
real number. We have

∥x+ t · y∥2 = (x+ t · y|x+ t · y)

= ∥x∥2 + t2 ∥y∥2 + 2t (x|y) .

Since ∥x+ t · y∥2 ≥ 0, we deduce that ∥x∥2 + t2 ∥y∥2 + 2t (x|y) ≥ 0. By
considering this as a polynomial of degree 2 in t, this implies that the dis-
criminant

∆ = 4 (x|y)2 − 4 ∥x∥2 ∥y∥2

is non-positive, which implies the desired inequality.
For the last assertion, notice that

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2 (x|y)

≤ ∥x∥2 + ∥y∥2 + 2 ∥x∥ ∥y∥
= (∥x∥+ ∥y∥)2.

□

From this lemma, we immediatly deduce the following.

Proposition 2.6. The function

Rk × Rk → R≥0

(x,y) 7→ ∥x− y∥

is a metric on Rk.

From now on, unless explicitly stated otherwise, we shall always consider
that Rk is equipped with this metric, hence making it a metric space.
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1. Sequences in metric spaces

Definition 1.1. Let (X, d) be a metric space. A sequence (xn) in X con-
verges to ℓ in X, if for all ϵ > 0, there exists an n ∈ N such that if n ≥ N ,
then d(x, ℓ) < ϵ.

Proposition 1.2. When it exists, the sequence of a limit is unique.

As it turns out, the convergence in Rk can be tested pointwise.

Proposition 1.3. Let (xn) be a sequence in Rk, (i.e. each xn = (x1,n, x2,n, · · · , xk,n)
is in Rk). This sequence is convergent in Rk if and only if each sequence
(xi,n)n for 1 ≤ i ≤ n is convergent. Moreover, if ℓi is the limit of (xi,n),
then

lim
n→+∞

xn = (ℓ1, ℓ2, · · · , ℓk).

Sketch of proof. Notice that for a point x = (x1, · · · , xk) of Rk, we have

|xi| ≤ ∥x∥ ≤
k∑

i=1

|xi|,

for any 1 ≤ i ≤ k. □

2. Open and closed subsets

Definition 2.1. Let (X, d) be a metric space, x an element of X and r > 0
a real number. We call (open) neighborhood of x of radius r, the set

Nr(x) = {y ∈ X | d(x, y) < r}.
Example 2.2. If X = R2, then Nr(x) is nothing but the (open) disk of
radius r and center x.

Definition 2.3. Let (X, d) be a metric space, E ⊆ X a subset of X and x
an element of X.

(1) x is an adherent point of E if for all r > 0, the subset

E ∩Nr(x)

is non-empty. In other words, every open neighborhood of x contains
at least an element of E,

(2) x is an accumulation point of E (also called limit point of E) if for
all r > 0, the subset

E ∩ (Nr(x)− {x})
is non-empty. In other words, every open neighborhood of x contains
at least an element of E different from x.

1
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(3) x is an isolated point of E if there exists an r > 0, such that

E ∩Nr(x) = {x}.

In other words, there exists a neighborhood of x that intersects E
only at x,

(4) x in an interior point of E if there exists an r > 0 such that

Nr(x) ⊆ E.

In other words, there exists a neighborhood of x included in E.

Remark 2.4. Any element x ∈ E is an adherent point of E. The converse
is not true. For example, if X = R and E = [0, 1), then 1 is an adherent
point of E.

Not every element x ∈ E is an accumulation point. It is if and only if it
is not an isolated point (Exercise).

Finally, note that an isolated point of E is necessarily an element of E.

Definition 2.5. Let (X, d) be a metric space. A subset E ⊆ X is closed if
it contains all its adherent points.

Proposition 2.6. A subset E of a metric space (X, d) is closed if and only
if for every sequence (xn) of elements of E which is convergent in X, the
limit is in E

lim
n→+∞

xn ∈ E.

Proof. Let’s start with the “only if” part. Let (xn) be a sequence of elements
of E, which is convergent to ℓ ∈ X. Let us show that if E is closed, then
ℓ ∈ E. By definition, for all ϵ > 0, there exists N ∈ N such that if n ≥ N ,
then xn ∈ Nϵ(ℓ). This shows in particular that ℓ is adherent to E, and thus
is an element of E because it is closed.

Now, the “if” part. Let x be an adherent point of E. For any n > 0, let
rn = 1

n . Since x is an adherent point of E, contains Nrn(x) at least a point
of E. For each n > 0, choose such an xn ∈ Nrn(x) ∩E. It is easy (exercise)
to see that (xn) converges to x, and therefore, by hypothesis, x ∈ E. □

Example 2.7. It follows from the previous proposition that the subset [a, b]
or R, where a and b are real numbers, is closed. The same is true for intervals
of the form (−∞, a] or [a,+∞).

Proposition 2.8. Let E be a subset of R which is bounded above (resp.
bounded below). If E is closed, then supE (resp. inf E) is an element of E.

Proof. We do the bounded above case, this other one being similar. Let us
show that α = supE is an adherent point. Because α is an upper bound
of E, for every x ∈ E, we have x ≤ α. Now, for any r > 0, there exists
an element of E in (α − r, α], because otherwise, this would mean that all
elements of E are smaller than α− r, which would contradict the fact that
α is the least upper bound. □

Definition 2.9. Let (X, d) be a metric space. A subset E ⊆ X is open if
for every element x of E is an interior point of E.
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Recall that for a subset E ⊆ X, the complementary of E (in X) is the
following subset of X:

Ec := {x ∈ X |x /∈ E}

Proposition 2.10. Let (X, d) be a metric space and E ⊆ X. Then E is
open if and only if its completary is closed. Dually E is closed if and only
if its complementary is open.

Proof. Suppose that E is open, and let x be an adherent point to Ec. By
definition, for all r > 0, Nr(x) contains at least a point of Ec. This implies
that x ∈ Ec, because otherwise, x would be an element of E, and since E
is open, Nr(x) would be included in E and could not contain a point of Ec.
Conversely, suppose that Ec is closed and let x ∈ E. Since Ec is closed, x
cannot be an adherant point of Ec, otherwise it would be in Ec. This means
that there exists r > 0 such that Nr(x) ⊆ E.

The other statement follows immediatly from the fact that (Ec)c = E. □

Proposition 2.11. Let (X, d) be a metric space. The following holds:

(1) ∅ and X are both open and closed subsets of X,
(2) if (Ei)i is an arbitrary family of open sets of X, then ∪iEi is open,
(3) if (Ei)i is an arbitrary family of closed sets of X, then ∩iEi is closed,
(4) if (E1, E2, · · · , En) is a finite family of open sets of X, then ∩n

i=1Ei

is open,
(5) if (E1, E2, · · · , En) is a finite family of closed sets of X, then ∪n

i=1Ei

is closed.

Proof. (1) Since ∅ contains no points, it satisfies trivially the conditions
to be open and closed. The statement about X follows from the fact
that ∅c = X.

(2) Let x be an element of ∪iEi. By definition, there exists i0 such that
x ∈ Ei0 . Since Ei0 is open, there exists r > 0 such that Nr(x) ⊆
Ei0 ⊂ ∪iEi.

(3) This follows from the previous point, Proposition 2.10 and the fact
that (∩iEi)

c = ∪iE
c
i .

(4) Let x be an element of ∩n
i=1Ei. By definition, x is an element of all

Ei. Since each Ei is open, for all 1 ≤ i ≤ n, there exists ri > 0 such
that Nri(x) ⊆ Ei. Now if we set r = min{i1, · · · , in}, then r > 0
and we have

Nr(x) ⊆ ∩n
i=1Ei.

(5) This follows from the previous point, Proposition 2.10 and the fact
that (∪iEi)

c = ∩iE
c
i .

□

Recall that any subset Y of a metric space (X, d) can also be seen as a
metric space in itself. Note, however, that a subset E ⊆ Y ⊆ X can be
closed (resp. open) in Y without being closed (resp. open) in X. To avoid
any confusion, we can use the terminology closed (resp. open) relative to Y
for subsets of Y which are closed in Y , when considered as a metric space
in itself.
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Proposition 2.12. Let (X, d) be a metric space and Y ⊆ X. A subset
E ⊆ Y of Y is open (resp. closed) relative to Y if and only if there exists
an open (resp. closed) subset F ⊂ X which is open (resp. closed) in X and
such that

E = Y ∩ F.

Proof. For a point y ∈ Y and r > 0, let us write NY
r (y) for the neighborhood

(of radius r) of y in Y and NX
r (y) for neighborhood (of radius r) of y in X.

In other words, we have

NY
r (y) = {z ∈ Y | d(y, z) < r}

and
NX

r (y) = {z ∈ X | d(y, z) < r}.
Notice that we have NY

r (y) = NX
r (x) ∩ Y . Let’s now prove the “if” part of

the proposition, in the open case and then the closed case. Let E = Y ∩ F
with F open and let x ∈ E. In particular, x ∈ F and since F is open in
X, there exists an r > 0 such that NX

r (x) ⊆ F , from which we deduce that
NY

r (x) = NX
r (x) ∩ Y ⊆ F ∩ Y , which proves that E is closed relative to Y .

Let’s do now the case F closed. Let x ∈ Y be an adherent point to Y ∩ F .
This means that for all r > 0,

NY
r (x) ∩ E = NX

r (x) ∩ Y ∩ E = NX
r (x) ∩ Y ∩ F ̸= ∅.

In particular, NX
r (x)∩ F ̸= ∅, which means that x is adherent to F (in X).

Since F is closed (in X), x is an element of F , and by hypothesis it is an
element of Y , hence it is an element of E, which proves that E is closed (in
Y ).

Now the “only if” part. Suppose that E is open in Y . For every x in E,
there exists rx > 0, such that NY

rx(x) ⊆ E. Define F as

F :=
⋃
x∈E

NX
rx (x),

which is open in X as a union of open subsets of X. Moreover, we have

Y ∩ F =
⋃
x∈E

(Y ∩NX
rx (x)) =

⋃
x∈E

NY
rx(x) = E.

Let’s now do the case when E is closed in Y . Then Y − E is open
in Y (because it is the complementary of E in Y ), and from the previous
proposition Y −E = Y ∩F with F open in X. This implies that E = Y ∩F c,
which proves the assertion. □

Nevertheless, in the case that Y is closed or open in X, we have the
following corollary.

Corollary 2.13. Let (X, d) be a metric space and Y ⊂ X an open (resp.
closed) subset of X. Then a subset E ⊆ Y is open (resp. closed) relative to
Y if and only if it is open (resp. closed) in X.

Proof. Exercise. □
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1. Compact subsets

Definition 1.1. Let (X, d) be a metric space and E ⊆ X be a subset. We
say that E is compact if every infinite subset of E has a limit point in E.

Example 1.2. If E is finite then it is trivially compact. We shall see soon
many examples of compact subset of Rk which are infinite.

Remark 1.3. Contrary to open or closed subsets, the property of being
compact for a subset does not depend on the space in which it is embedded.
In particular, we can just unambiguously speak of a compact metric space.

We are going to reformulate the definition of compact subsets using se-
quences. In order to do that, we need the following definition.

Definition 1.4. Let (xn)n∈N be a sequence in a metric space. A subsequence
of (xn)n∈N is a sequence of the form (xnk

)k∈N, where

n0 < n1 < n2 < · · ·
is a strictly increasing sequence of natural integers. If a subsequence con-
verges, we call the limit of this subsequence a subsequential limit of (xn).

Example 1.5. For any sequence (xn), we can consider the subsequence
(x2p)p of even indices, and the subsequence (x2p+1)p of odd indices.

Proposition 1.6. A sequence (xn) in a metric space is convergent to ℓ if
and only if every subsequence converges to ℓ.

Proof. Exercise. □

Remark 1.7. Note that a sequence can be divergent but still have certain
subsequences that are convergent. For example, for the sequence (un = (−1)n),
the subsequence (u2k) converges to 1 and the subsequence (u2k+1) converges
to −1.

Lemma 1.8. A sequence (xn) in a metric space (X, d). A point x ∈ X is a
subsequential limit of (xn), if and only if for all ϵ > 0, there exists infinitely
many n ∈ N such that xn ∈ Nϵ(x).

Proof. “If” part. We are going to construct recursively a subsequence of (xn)
which converges to x. For all k ≥ 1, let ϵk = 1

k . First choose any n1 in N
such that xn1 ∈ Nϵ1(x) (which is possible by hypothesis). Suppose now that
we have constructed n1 < n2 < · · · < nk such that xnk

∈ Nϵk(x). Because
we know that there exists infinitely many n ∈ N such that xn ∈ Nϵk+1

(x),
there exists at least one nk+1 > nk such that xnk+1

∈ Nϵk+1
(x). Repeating

1
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this process, this construct a subsequence (xnk
)k of (xn) such that for all

k > K, xnk
∈ NϵK (x), which shows that (xnk

) converges to x.
“Only if” part. Let (xnk

) be a subsequence converging to x. For all ϵ > 0,
there exists N ∈ N such that if k > N then xnk

∈ Nϵ(x). In particular for
any n = nk with k > N , we have xn ∈ Nϵ(x), which is infinitely many of
such n.

□

Theorem 1.9. Let (X, d) be a metric space and E ⊂ X. Then E is a
compact if and only if every sequence (xn) in E admits a subsequential limit
in E.

Proof. “If” part. Let F ⊆ E be an infinite subset of E. Because this subset
is infinite, there exists a sequence (xn) of elements of F such that if n ̸= m,
then xn ̸= xm. By hypothesis, this sequence admits a subsequential limit
x ∈ E. Let us show that x is an accumulation point of F . By Lemma 1.8, this
means that for all ϵ there exists infinitely many Suppose that E is compact
and let (xn) be a sequence in E. Consider the subset F = {xn |n ∈ N} of
E. There are two cases to consider. First if F is finite F = {y1, y2, · · · , yk},
then necessarily A FINIR. If F is infinite, then, because E is compact, it
admits an accumulation point in E, which means exactly that (xn) admits
a subsequential limit in E by Lemma 1.8.

□

Proposition 1.10. Every compact subset of a metric space is closed.

Proof. Let (xn) be a sequence of K which is convergent to ℓ ∈ X. We
need to show that ℓ ∈ K. Because K is compact, we know that (xn) has a
sequential limit in K, which must be equal to ℓ by Proposition 1.6, hence
ℓ ∈ K. □

Proposition 1.11. Every closed subset of a compact is compact.

Proof. Let F ⊂ K ⊂ X, with (X, d) metric space, K compact and F closed
inK (or equivalently inX, sinceK is necessarily closed by Proposition 1.10).
Let (xn) be a sequence in F . It is also a sequence in K, and thus admits a
subsequential limit in K since K is compact. But because F is closed, this
subsequential limit is also in F , which proves that F is compact. □

Definition 1.12. Let (X, d) be a metric space. A subset E ⊆ X is bounded
if there exists and M ∈ R≥0 such that

d(x, y) ≤ M

for all x, y ∈ E.

Example 1.13. A subset E ⊆ Rk is bounded if and only if there exists
M1,M2, · · · ,Mk such that E ⊆ [−M1,M1] × [−M2,M2] × · · · × [−Mk,Mk]
(Exercise). In particular, for k = 1, we recover the usual definition of
boundedness.

Theorem 1.14. Let (X, d) be a metric space and K ⊆ X. The following
holds:

(1) If K is compact, then K is closed and bounded.
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(2) If X = Rk, then the converse holds, that is, K is compact if and
only if it is closed and bounded.

Sketch of proof. □

Corollary 1.15. Every bounded sequence of Rk has a subsequential limit.

2. Complete metric spaces

Definition 2.1. A metric space (X, d) is complete if and only if every
Cauchy sequence in X is convergent.

Example 2.2. We have already seen that R is convergent. More generally,
we have the following result.

Proposition 2.3. For any k ≥ 1, the metric space Rk is complete.

Proof. It is easy to see that a sequence (xn) in Rk (i.e. where each xn =
(x1,n, x2,n, · · · , xk,n) is a point in Rk) is Cauchy if and only if each of the
sequence

(xi,n)n
is Cauchy, for 1 ≤ i ≤ k. Using that R is complete and thus each of this
sequence is convergent, it follows that (xn) is convergent, which proves that
Rk is complete. □

Proposition 2.4. Every closed subset F ⊆ X of a complete metric space is
complete (when F is equipped with the metric induced by X).

Proof. Exercise. □

Proposition 2.5. Every compact metric space is complete.

Proof. Exercise. □
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1. Continuity

Definition 1.1. Let X and Y be metric spaces, x0 an element of X and
f : X → Y a function. We say that f is continuous at x0 if for all ϵ > 0,
there exists δ > 0 such that if dX(x0, x) < δ, then dY (f(x0), f(x)) < ϵ.

Proposition 1.2. A function f : X → Y is continuous at x0 ∈ X if and
only if for every sequence (xn) in X which converges to x0, the sequence
(f(xn)) converges to f(x0).

Proof. Suppose that f is continuous at x0 and let (xn) be a sequence con-
verging to x0. For any ϵ > 0, there exists δ > 0 such that if dX(x0, x) < δ
then dY (f(x0), f(x)) < ϵ, and there exists N ∈ N such that if n ≥ N , then
dX(x0, xn) < δ. In particular, if n ≥ N then dY (f(xn), f(x0)) < ϵ, which
proves that (f(xn)) converges to f(x0).

For the converse, let us prove the contraposive, that is if there exists a
sequence (xn) converging to x0 such that f(xn) does not converge to f(x0),
then f is not continuous at x0. The fact that f(xn) does not converge to
f(x0) means that there exists ϵ > 0, such that for all N ∈ N, there exists
n ≥ N such that dY (f(x0), f(xn)) ≥ ϵ. Now, because (xn) is converging to
x0, we know that for all δ > 0, there exists Nδ ∈ N such that if n ≥ Nδ,
then dX(x0, xn) < δ. In particular, this proves that for all δ, there exists
at least one xn such that dX(x0, xn) < δ, but dY (f(x0), f(x)) ≥ 0, which
proves that f is not continuous at x0. □

Corollary 1.3. Let f : X → Y and g : Y → Z be functions, with X,Y
and Z metrics spaces. If f is continuous at x0 ∈ X and g is continuous at
f(x0) ∈ Y , then g ◦ f is continuous at x0.

Definition 1.4. Let X and Y be two metric spaces. A function f : X → Y
is continuous if it is continuous at every x0 ∈ X.

Recall that given a function f : X → Y and E ⊆ Y , we denote by f−1(E)
the subset of X defined as

f−1(E) := {x ∈ X | f(x) ∈ E}

Proposition 1.5. Let X and Y be metric spaces and f : X → Y a function.
The following are equivalent:

(1) f is continuous,
(2) for every open subset O of Y , the subset f−1(O) of X is open,
(3) for every closed subset F of Y , the subset f−1(F ) of X is closed.

1
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Proof. First notice that (2) and (3) are equivalent because for any subset
E ⊆ Y , we have f−1(Ec) = (f−1(E))c.

Let us prove that (1) ⇒ (2). Suppose that f is continuous and let O be an
open subset of Y . We want to show that f−1(O) is open, that is, that every
point of f−1(O) is interior to f−1(O). Let x ∈ f−1(O), that is f(x) ∈ O.
Since O is open, there exists ϵ > 0 such that Nϵ(f(x)) ⊆ O, and because f is
continuous, there exists δ > 0 such that if x′ ∈ Nδ(x) then f(x′) ∈ Nϵ(f(x)).
This implies that f(Nδ(x)) ⊆ O, and so that Nδ(x) ⊆ f−1(O), hence x is
interior to f−1(O).

Let us now prove that (2) ⇒ (1). Let x ∈ X and let ϵ > 0. The subset
Nϵ(f(x)) of Y is open (see exercises from week 5), and so f−1(Nϵ(f(x))
is open. Since x ∈ f−1(Nϵ(f(x))), there exists δ > 0, such that Nδ(x) ⊆
f−1(Nϵ(f(x))), which means exactly the continuity at x. □

We end this section with the relation between composition of functions
and continuity.

Proposition 1.6. Let f : X → Y and g : Y → Z be functions with X,Y
and Z metric spaces. If f is continuous at x0 ∈ X and g is continuous at
f(x0) ∈ Y , then g ◦ f is continuous at x0.

In particular, if f and q are continuous, then g◦f : X → Y is continuous.

Proof. Let (xn) be a sequence in X converging to x0. Since f is continuous,
then f(xn) converges to f(x0), and since g is continuous, then g(f(xn))
converges to g(f(x0)), which shows the continuity of g ◦ f at x0. □

2. Numerical functions

Lemma 2.1. Let (X, d) be a metric space. A function

f = (f1, f2, · · · , fn) : X → Rk

is continuous if and only if fi : X → R is continuous for each 1 ≤ i ≤ k.

Proof. This follows easily from Proposition 1.2 and the fact that a sequence
(xn) in Rk converges if and only if each of its coordinate sequences converge
(Proposition 1.3 of Week 5’s lecture). □

Proposition 2.2. Let (X, d) be a metric space and let f ,g : X → Rk be
functions. The following hold:

(1) if f and g are continuous then f + g is continuous,
(2) if f and g are continuous then (f |g) is continuous.

Moreover, in the case that k = 1 and g(x) ̸= 0 for all x ∈ X, we have

(3) if f and g are continuous, then f
g is continuous.

Proof. Left as an exercise. □

Definition 2.3. A function f : Rk → R is called monomial if it is of the
form

f : Rk → R
(x1, · · · , xk) 7→ xi1xi2 · · ·xin ,

where i1, i2, · · · , in are integers between 1 and k (included).
A function f : Rk → R is called polynomial if it is a sum of monomial

functions.
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Proposition 2.4. A polynomial function f : Rk → R is continuous.

Proof. This follows immediatly from Proposition 2.2 (a) and (b). □

Proposition 2.5. The following real functions are continuous:

• R≥0 → R, x 7→ n
√
x with n even,

• R → R, x 7→ n
√
x with n odd,

• R → R, x 7→ exp(x),
• R≥0 → R, x 7→ ln(x).

Proof. Admitted. See chapter ?? of Rudin. □

We finish this section with a very important theorem on real functions.

Theorem 2.6 (Intermediate-value theorem). Let f : [a, b] → R be a contin-
uous function such that f(a) < f(b). For all f(a) < c < f(b), there exists
a ≤ x ≤ b such that f(x) = c.

Proof. Let’s start with the case f(a) < 0, f(b) > 0 and c = 0. We need to
show that there exists a ≤ x ≤ b such that f(x) = 0. □
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1. Continuous functions and compactness

Definition 1.1. A function f : X → R is bounded if there exists anM ∈ R≥0

such that
|f(x)| ≤ M

for all x ∈ X.

Recall that given a function f : X → Y and E ⊆ X, we denote by f(E)
the subset of Y defined as

f(E) := {y ∈ Y | there exists x ∈ X such that f(x) = y}.

Proposition 1.2. Let X and Y be metric spaces and f : X → Y a continu-
ous function. If K is a compact subset of X, then f(K) is a compact subset
of Y .

Proof. Let (yn) be a sequence in f(K). By definition, this means that each
yn is of the form yn = f(xn) with xn ∈ K. Since K is compact, there exists
a subsequence of (xnk

) which is convergent in K. Since f is continuous,
(f(xnk

) is convergent in f(K), which proves that f(K) is compact. □

Corollary 1.3. Let f : X → Rk be a continuous function. If K is compact
subset of X, then f(K) is bounded (and closed).

Corollary 1.4. Let f : X → R be a continuous function. If X is compact,
and

M = sup
x∈X

f(x), m = inf
x∈X

f(x).

Then there exists x and x′ in X such that f(x) = M and f(x′) = m.

Proof. Exercise. □
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1. Pointwise convergence

Definition 1.1. Let X be a set and (Y, dY ) a metric space. Let (fn) be a
sequence of functions fn : X → Y , we say that (fn) converges pointwise (on
X) to a function f : X → Y , if for every x ∈ X, we have

lim
n→+∞

fn(x) = f(x).

Suppose that (fn) converges pointwise on X to f . We can ask the follow-
ing questions:

(1) If each (fn) is continuous and the sequence converges pointwise to a
function f , is f also continuous?

More generally, we can ask similar questions for any other kinds of properties
involving limits.

(2) If X = [a, b], do we have

lim
n→+∞

∫ b

a
f(x)dx =

∫ b

a
f(x)dx?

(3) If X is a real interval and each fn is derivable, do we have

lim
n→+∞

f ′
n(x) = f ′(x)?

In general, the answers to these questions are all no. In this lecture, we will
focus on the first one of these questions, for which the following example
proves that the answer is negative.

Example 1.2. Let fn(x) = xn. On [0, 1] this sequence converges pointwise
to the function f given by

f(x) =

{
0 for 0 ≤ x < 1,

1 for x = 1.

While each fn is continuous on [0, 1], the limit function f is not.

2. Uniform convergence

Spelled out, the definition of pointwise convergence means that for every
x ∈ X, for every ϵ > 0, there exists an N ∈ N such that if n ≥ N , then

dY (fn(x), f(x)) < ϵ.

In particular, the integer N can depend on the point x. This allows for a
stronger notion of convergence as follows.

1
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Definition 2.1. Let X be a set and (Y, dY ) be a metric space. Let (fn) be
a sequence of functions fn : X → Y , we say that (fn) converges uniformely
to a function f : X → Y , if for every ϵ > 0, there exists an N ∈ N, such that
if n ≥ N then for all x ∈ X we have

d(fn(x), f(x)) < ϵ.

Note that uniform convergence implies pointwise convergence.
Uniform convergence can be reformulated as follows.

Proposition 2.2. Let (fn) be a sequence of functions that converges point-
wise to f . Then (fn) converges uniformly to f on X if and only if the
sequence

sup
x∈X

dY (fn(x), f(x))

converges to 0 when n → +∞.

Note also that in the case of real valued functions, we can apply the
Cauchy criterion.

Theorem 2.3 (Cauchy criterium). Let (fn) be a sequence of function fn : X →
R. This sequence is uniformely convergent if and only if for all ϵ > 0, there
exists N ∈ N such that for all x ∈ X, if n,m ≥ N then

|fn(x)− fm(x)| < ϵ.

Our main result concerning uniform convergence is the following.

Theorem 2.4. Let (X, dX) and (Y, dY ) be metric spaces and (fn) a sequence
of functions fn : X → Y converging uniformely to f : X → Y . If for every
n, fn is continuous then f is also continuous.

Proof. Let x0 ∈ X. Let ϵ > 0, we know that there exists N ∈ N such that
if n ≥ N , then

dY (fn(x), f(x)) <
ϵ

3
for all x ∈ X. Since fN is continuous in x0, there exists δ > 0 such that
if dX(x, x0) < δ, then dY (fN (x0), fN (x)) < ϵ

3 . Hence, if dX(x, x0) < δ, we
have

dY (f(x), f(x0)) ≤ dY (f(x), fN (x))+dY (fN (x), fN (x0))+dY (fN (x0), f(x0)) < ϵ.

□

3. Series of functions

Uniform convergence also applies to series of functions.

Definition 3.1. Let X be a set and (fn) a sequence of function fn : X → R.
We say that the series

∑
fn converges uniformely if the sequence of partial

sums
n∑

k=0

fk

converges uniformely.

The following criterion is useful to determine the uniform convergence of
a series of functions.
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Theorem 3.2 (Weierstrass). Let (fn) be a sequence of functions fn : X → R
and suppose that there exists a real sequence (Mn) such that

|fn(x)| ≤ Mn

for every n ∈ N and every x ∈ X.
If

∑
Mn converges then

∑
fn converges uniformely.

Note that the important hypothesis in the previous theorem is that Mn

does not depend on x.

Proof. Exercise. □

4. Uniform convergence and continuity
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1. Geometric interpretation of the derivative

1.1. The idea of derivation is to approximate a function f : I → R at a given
x0 ∈ I by a line. Recall that the equation of a line is given by y = ax + b,
hence we would like to say something like

f(x) ≃ ax+ b

when “x is close to x0”. In particular, for x = x0, we must have f(x0) =
ax0 + b and thus, we can rewrite the previous equation as

f(x) ≃ f(x0) + a(x− x0),

when x is close to x0. Or, if we set δx = x− x0, we can rewrite it as

f(x0 + δx) ≃ f(x0) + aδx,

when δx is close to 0. But how do we formalize the symbol ≃? The idea
is to say that this equality is true up to a remainder that is “neglectable in
front of δx”. Hence, we can write

f(x0 + δx) = f(x0) + a · δx+ r(δx),

where r is a function such that lim
δx→0

r(δx)

δx
= 0, which means intuitively that

r(δx) tends to 0 much faster than δx. If we divide the previous equality by
δx, we obtain

f(x0 + δx)− f(x0)

δx
= a+

r(δx)

δx
,

hence

lim
δx→0

f(x0 + δx)− f(x0)

δx
= a.

Hence, a is nothing but the derivative of f at x0.

Definition 1.2. Let I be an interval of R, f : I → R a function and x0 ∈ R.
We say that f is derivable at x0 if the following limit exists

lim
h→0

f(x0 + h)− f(x0)

h
.

In which case, the value of this limit is denoted by f ′(x0) and referred to as
the derivative of f at x0.

If f is derivable at every point of I, we say that f is derivable on I, or
simply derivable.

1
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Proposition 1.3. Let f : I → R be a function and x0 ∈ I. If f is derivable
at x0, then we have

f(x0 + h) = f(x0) + f ′(x0) · h+ r(h),

where r is a function such that limh→0
r(h)
h = 0.

Proof. It suffices to take r(h) = f ′(x0) · h− (f(x+ h)− f(x)). □

Remark 1.4. Sometimes, the equality of the previous proposition is written
as

f(x) = f(x0) + f ′(x0) · (x− x0) + r(x− x0),

with r a function such that limx→x0

r(x−x0)
x−x0

= 0.

Definition 1.5. If f is derivable at x0, the line of equation

y = f(x0) + f ′(x0) · (x− x0)

is called the tangent of f at x0.

Let us end this section with an easy but essential result.

Proposition 1.6. Let f : I → R be a function and x0 ∈ I. If f is derivable
at x0 then it is continuous at x0.

Proof. Because we have f(x0 + h) = f(x0) + f ′(x0) · h+ r(h), we have

lim
h→0

f(x0 + f) = f(x0)

(because limh→0 r(h) = 0). □

2. Local study

Definition 2.1. Let f : I → R a function, and x0 an interior point of I. We
say that x0 is a local maximum (resp. local minimum) if there exists δ > 0
such that for x ∈ (x0 − δ, x0 + δ), we have

f(x) ≥ f(x0)

(resp.
f(x) ≤ f(x0)).

We say that x0 is a local extremum if it is either a local maximum or a local
minimum.

Proposition 2.2. Let f : I → R and x0 an interior point to I. If x0 is a
local extremum of f and f is derivable at x0, then f ′(x0) = 0.

Proof. Suppose that f ′(x0) ̸= 0, for example f ′(x0) > 0. In particular, there
exists δ > 0 such that for x ∈ (x0 − δ, x0 + δ), we have

f(x)− f(x0)

x− x0
> 0.

This means that f(x)− f(x0) is of the sign of x− x0, which contradicts the
fact that f(x0) is a local extremum.

A similar argument applies in the case f ′(x0) < 0. □

Even though the derivative allows us to find local extrema, it is not suf-
ficient to determine whether this local extremum is a local minimum or a
local maximum. In order to do that, we need higher order derivatives.



LECTURE – WEEK 11 3

3. Higher order derivatives

3.1. Proposition 1.3 can be restated by saying that when f is derivable at
x0, then f can be approximated by a polynomial of degre 1 around x0. In
fact, we can go further and wonder if it’s possible to approximate f by a
polynomial of degree 2, that is, we wonder if there are a, b, c ∈ R such that

f(x0 + h) = a+ b · h+ c · h2 + r(h),

where r is a function such that limh→0
r(h)
h2 = 0. More generally, we can

wonder if we can approximate f by a polynomial of degree n around x0,
that is if there exists a0, a1, · · · , an ∈ R

f(x0 + h) = a0 + a1 · h+ · · ·+ an · hn + r(h),

where lim
h→0

r(h)

hn
= 0.

Definition 3.2. Let f : I → R be a function, with I interval of R. If f is
derivable on I, and the derived function f ′ : I → R is also derivable, then
we denote by f ′′ or f (2) the derivative of f ′. In this case, we say that the
function f is two-times derivable and f (2) is called the second derivative of
f .

More generally, we say that f is n-times derivable if f (n−1) is derivable,
and we call f (n) the n-th derivative of f .

Definition 3.3. Let I be an interval of R and n ≥ 1. We denote by Cn(I) the

set of n-times derivable functions f : I → R such that all f (n) is continuous.
We also denote by C0(I) the set of continuous functions on I.
Finally, we denote by C∞(I) the set of infinitely derivable functions on I,

that is

C∞(I) =
⋂
n≥0

Cn(I).

Remark 3.4. We have

C0(I) ⊃ C1(I) ⊃ C2(I) ⊃ · · · ⊃ C∞(I).

Proposition 3.5 (Taylor-Young). Let I be an interval of R and x0 ∈ I.
For any f ∈ Cn(I), we have

f(x0 + h) = f(x0) + f ′(x0) · h+
f (2)(x0)

2
· h2 + · · · f

(n)(x0)

n!
· hn + r(h),

where r is a function such that lim
h→0

r(h)

hn
= 0.

Definition 3.6. Let f ∈ Cn(I) and x0 ∈ I. The polynomial in h

f(x0) + f ′(x0) · h+
f (2)(x0)

2
· h2 + · · · f

(n)(x0)

n!

is called the Taylor polynomial of f of degree n, and the formula

f(x0 + h) = f(x0) + f ′(x0) · h+
f (2)(x0)

2
· h2 + · · · f

(n)(x0)

n!
· hn + r(h)

is called the Taylor expansion of f of degree n.
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Remark 3.7. As before, we can also write the Taylor expansion at x0 as

f(x) = f(x0) + f ′(x0) · (x− x0) + · · · f
(n)(x0)

n!
(x− x0)

n + r(x− x0),

with r a function such that limx→x0

r(x−x0)
(x−x0)n

= 0.

4. Local analysis

The use of the Taylor expension is very useful to study the local behaviour
of a function.

Proposition 4.1. Let f : I → R be a function in C∞(I) and let x0 be an
interior point of I such that f ′(x0) ̸= 0. Suppose that there exists n > 1

such that f (n) ̸= 0 and let k be the first of such integers n. Then:

(1) if k is even, then x0 is a local extremum and more precisely:

(a) a local minimum if f (k)(x0) > 0,

(b) a local maximum if f (k)(x0) < 0,
(2) if k is odd, then x0 is an inflexion point and more precisely

(a) f is (locally) increasing at x0 if f (k)(x0) > 0,

(b) f is (locally) decreasing at x0 if f (k)(x0) < 0.

Proof. By the Taylor formula, we have

f(x)− f(x0) =
f (k)(x0)

k!
· (x− x0)

k + r(x− x0).

In particular, since f (k)(x0) ̸= 0, f(x)− f(x0) is of the sign of f (k)(x0) · (x−
x0)

k in a neighborhood of x. From this, all the cases follow easily. □
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1. Derivatives

1.1. If A : Rm → Rn is a linear map and h ∈ Rm, we will use the notation

A · h or even Ah instead of A(h).

The notation Ah is consistent with the fact that A can be represented by a
matrix and h by a column vector (i.e. a m× 1 matrix), and Ah is obtained
by matrix multiplication.

Definition 1.2. Let f : U ⊂ Rn → Rm be a function, with U an open subset
of Rn. We say that f is differentiable (or derivable) at x ∈ U if there exists
a linear map A : Rm → Rn such that

f(x+ h) = f(x) +Ah+ r(∥h∥),
for h ∈ Rm in a neighborhood of 0 (so that x+ h is in a neighborhood of x)
and r is a function such that

lim
h→0

∥r(h)∥
∥h∥

= 0.

We say that f is differentiable (or derivable) on U if it is differentiable at
every point x ∈ U .

Remark 1.3. In other words, f is differentiable at x if and only if there
exists a linear map A : Rn → Rm such that

lim
h→0

∥f(x+ h)− f(x)−Ah∥
∥h∥

= 0.

Lemma 1.4. If f is differentiable at x, then the linear map A as in the
previous definition is unique.

1.5. Consequently, if f : U ⊂ Rm → Rn is differentiable at x0 then we write
Dxf or f ′(x), and call refer to the derivative of f at x for the unique linear
map Rn → Rm such that

lim
h→0

∥f(x+ h)− f(x)−Dxf · h∥
∥h∥

= 0.

As you know, a linear map can be represented by a matrix. We are
now going to see what the matrix of Dxf looks like. Let’s start by the
components.

1.6. Recall that a function f : U ⊂ Rm → Rn is of the form

f(x) = (f1(x), f2(x), · · · , fn(x)).
The fj , for each 1 ≤ j ≤ m are called the components of f .

1
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Note that using the matrix notation, we are saying that

f(x) =


f1(x)
f2(x)
...

fn(x)


Proposition 1.7. A function f : U ⊂ Rm → Rn is differentiable at x ∈ U
if and only if each of the components functions fj is differentiable at x. In
this case, we have

Dxf · h = (Dxf1 · h,Dxf2 · h, · · · , Dxfm · h).

Note that in matrix notation, it becomes

Dxf · h =


Dxf1 · h
Dxf2 · h

...
Dxfm · h

 .

Definition 1.8. Let f = (f1, · · · , fn) : U → Rn be a function, with U an
open subset, and let x = (x1, · · · , xm) a point of U . The partial derivative

∂fj
∂xi

for 1 ≤ j ≤ n and 1 ≤ i ≤ m, is the derivative of the the real function

t 7→ fj(x0, · · · , xi−1, t, xi+1, · · · , xm).

Remark 1.9. In other words, we have

∂fj
∂xi

= lim
t→0

f(x+ tei)− f(x)

t
,

where ei is the i-th vector of the standard base of Rm.

Proposition 1.10. Let f : U → Rn be a function, with U ⊆ Rm an open
subset. If f is differentiable at x ∈ U , then the matrix of Dxf , referred to
as the Jacobi matrix of f at x, and denoted by Jxf is given by

Jxf =


∂f1
∂x1

· · · ∂f1
∂xm

...
...

∂fn
∂x1

· · · ∂fn
∂xm

 .

Remark 1.11. More explicitly, the previous proposition says that

Dxf · h =


∂f1
∂x1

· · · ∂f1
∂xm

...
...

∂fn
∂x1

· · · ∂fn
∂xm


h1

...
hn

 .
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1. Continuously differentiable functions

1.1. We denote by L(Rm,Rn) the set of linear maps A : Rm → Rn. Hence-
forth, we shall identify such maps with n×m matrices.

Definition 1.2. Let A ∈ L(Rm,Rn), seen as a matrix (ai,j). We define its
norm ∥A∥ as the following non-negative real number

∥A∥ :=

√√√√ m∑
j=1

n∑
i=1

|ai,j |2

Lemma 1.3. Let A,B ∈ L(Rm,Rn) and X ∈ Rm, the following holds:

(1) ∥A∥ = 0 if and only if A = 0,
(2) ∥A+B∥ ≤ ∥A∥+ ∥B∥,
(3) ∥AX∥ ≤ ∥A∥ ∥X∥.

1.4. In particular, it follows that we have a metric on L(Rm,Rn) defined as
d(A,B) = ∥A−B∥. We shall now always equip the set L(Rm,Rn) with this
metrc. This allows us to speak of the continuity of x 7→ Dxf as is stated in
the following definition.

Definition 1.5. Let U ⊂ Rm an open subset and f : U → Rm a function.
We say that f is C1 if f is differentiable in U and the map

Df : U → L(Rm,Rn)

x 7→ Dxf

is continuous.

Proposition 1.6. A map f : U → Rn, where U is an open subset of Rm, is
C1 if and only if all the partial derivative

∂fj
∂xi

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, exist on U and are continuous.

Remark 1.7. In particular, the previous theorem tells us that if all the
partial derivatives exist and are continuous, then f is differentiable on U .

Note that if all partial derivatives of f are differentiable, we can take their
derivatives again, leading to higher derivatives.

1
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Definition 1.8. Let U ⊆ Rm an open subset. A function f : U → Rk is Ck

if all higher partial derivatives

∂kfi
∂xj1∂xj2 · · · ∂xjk

exist and are continuous on U .

Theorem 1.9. Let f : U → Rn be a Ck-function on an open set U ⊆ Rm

for k ≥ 2. Let j1, . . . , jk ∈ {1, . . . , n}. If σ is a permutation of {1, . . . , k},
then

∂kf

∂xj1 · · · ∂xjk
=

∂kf

∂xjσ1 · · · ∂xjσk
.

For k = 2, this theorem says that

∂2f

∂x∂y
=

∂2f

∂y∂x
.

2. The chain rule

Theorem 2.1. Let U ⊆ Rm and V ⊆ Rn be open subsets. Let f : U → Rn

and g : V → Rl be functions such that f(U) ⊆ V so that g ◦ f : U → Rl is
well-defined.

If g and f are differentiable, then so is g ◦ f and we have

Dx(g ◦ f) = Df(x)g ◦Dxf.

2.2. In terms of Jacobi matrices, the previous theorem says that Jacobi
matrix of g ◦ f is the multiplication of the Jacobi matrix of g with the
Jacobi matrix of f

Jx(g ◦ f) = Jf(x)g ◦ Jxf.

3. The inverse function theorem

Definition 3.1. Let U and V be open subsets of Rn. A function φ : U → V
is a diffeomorphism if φ is bijective and both the function φ and its inverse
φ−1 are differentiable. We say that φ is a Ck-diffeomorphism if φ is bijective
and both the function φ and its inverse φ−1 are Ck-functions.

Proposition 3.2. If φ : U → V is a diffeomorphism, then for every x ∈ U ,
the derivative Dxf : Rn → Rn is invertible and

(Dxφ)
−1 = Dφ(x)(φ

−1).

Proof. □

Diffeomorphisms are a very important class of functions and we would
like to characterize them. In order to do that, we first introduce a notion
close to that of diffeomorphism.

Definition 3.3. Let φ : U → Rn a function, where U is an open subset of Rn.
We say that φ is a local diffeomorphism (resp. a local Ck diffeomorphism)
if for every x ∈ U , there is an open neighborhood B of x such that φ : B →
φ(B) is a diffeomorphism (resp. a Ck-diffeomorphism). Note that in this
case the set φ(B) is open.
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As we shall see soon, local diffeomorphisms have a nice characterization.
First, let us see how they relate to diffeomorphism.

Lemma 3.4. A function f : U → Rn, where U is an open subset of Rn. If
the following condition are satisfied

• f is injective,
• f is a local diffeomorphism (resp. a local Ck-diffeomorphism),

then f defines a diffeomorphism (resp. a Ck-diffeormorphism) onto its image

f : U → f(U).

Sketch of proof. This follows trivially from the fact that the derivability is
a local notion. □

The following very important theorem gives a characterization of local
diffeomorphisms.

Theorem 3.5 (Inverse function theorem). Let E ⊆ Rn be an open subset
and let f : E → Rn be a Ck-function on U (with k ≥ 1). If for x ∈ U , the
derivative Dxf is invertible, then there exists and open subset U containing
x, such that f(U) is open and the restriction of f to U

f |U : U → f(U)

is a Ck-diffeomorphism.

In other words, the inverse function theorem says that in order to show
that f is a Ck local diffeomorphism, it suffices to proves that f is Ck with
k ≥ 1 and that the linear approximation of f (i.e. the derivative of f) is
invertible.

Corollary 3.6. A function f : U → Rn, with U open subset of Rn is a local
Ck diffeomorphism (with k ≥ 1) if and only if it is Ck on U and its derivative
Dxf is invertible for every x ∈ U .
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